Experimental determination of KPZ height-fluctuation distributions

Statistical and Nonlinear Physics

Abstract.

Height-fluctuation distributions of nonequilibrium interfaces were analyzed using slow-combustion fronts propagating in sheets of paper. All distributions measured were definitely non-Gaussian. The experimental distributions for transient and stationary regimes were well fitted by the theoretical distributions proposed by Prähofer and Spohn in reference [9]. Consistent with the Galilean invariance of the system, the same distributions were found for horizontal fronts and, when determined along the normal to the slope, for fronts with a non-zero average slope.

Keywords

Spectroscopy Neural Network State Physics Complex System Nonlinear Dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Kardar, G. Parisi, Y.-C. Zhang, Phys. Rev. Lett. 56, 889 (1986) CrossRefPubMedGoogle Scholar
  2. A.-L. Barabási, H.E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995) Google Scholar
  3. T. Halpin-Healy, Y.-C. Zhang, Phys. Rep. 254, 215 (1995) CrossRefGoogle Scholar
  4. P. Meakin, Fractals, Scaling, Growth Far From Equilibrium (Cambridge University Press, Cambridge, 1998) Google Scholar
  5. J. Krug, P. Meakin, T. Halpin-Healy, Phys. Rev. A 45, 638 (1992) CrossRefPubMedGoogle Scholar
  6. E. Medina, T. Hwa, M. Kardar, Y.C. Zhang, Phys. Rev. A 39, 3053 (1989) CrossRefPubMedGoogle Scholar
  7. T. Hwa, E. Frey, Phys. Rev. A 44, R7832 (1991) Google Scholar
  8. H. Kallabis, J. Krug, Europhys. Lett. 45, 20 (1999) CrossRefGoogle Scholar
  9. M. Prähofer, H. Spohn, Phys. Rev. Lett. 84, 4882 (2000) CrossRefPubMedGoogle Scholar
  10. Z. Racz, e-print cond-mat/0307490 (2003) Google Scholar
  11. S.M.A. Tabei, A. Bahraminasab, A.A. Msoudi, S.S. Mousavi, M. RezRahimi Tabar, Phys. Rev. E 70, 031101 (2004) CrossRefGoogle Scholar
  12. F. Ginelli, H. Hinrichsen, J. Phys. A: Math. Gen. 37, 11085 (2004) CrossRefMathSciNetGoogle Scholar
  13. J. Baik, E.M. Rains, e-print math.CO/9910019 (1999); e-print math.PR/0003130 (2000) Google Scholar
  14. Craig A. Tracy, Harold Widom, eprint solv-int/9707001; pp. 461–472 in Calogero-Moser-Sutherl Models, edited by J.F. van Diejen, L. Vinet, CRM Series in Mathematical Physics 4 (Springer-Verlag, New York, 2000) Google Scholar
  15. M. Prähofer, Ph.D. Thesis, Zentrum Mathematik, Technische Universität München (Munich, 2003) Google Scholar
  16. J. Maunuksela, M. Myllys, O-P. Kähkönen, J. Timonen, N. Provatas, M.J. Alava, T. Ala-Nissila, Phys. Rev. Lett. 79, 1515 (1997) CrossRefGoogle Scholar
  17. M. Myllys, J. Maunuksela, M. Alava, T. Ala-Nissila, J. Merikoski, J. Timonen, Phys. Rev. E 64, 036101 (2001) CrossRefGoogle Scholar
  18. J. Merikoski, J. Maunuksela, M. Myllys, J. Timonen, M. Alava, Phys. Rev. Lett. 90, 024501 (2003) CrossRefPubMedGoogle Scholar
  19. J. Maunuksela, M. Myllys, J. Merikoski, J. Timonen, T. Kärkkäinen, M.S. Welling, R.J. Wijngaarden, Eur. Phys. J. B 33, 193 (2003) Google Scholar
  20. M. Myllys, J. Maunuksela, J. Merikoski, J. Timonen, M. Avikainen, Eur. Phys. J. B 36, 619 (2003) Google Scholar
  21. Robert D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Nature 389, 829 (1997) CrossRefPubMedGoogle Scholar
  22. See, e.g., B. Derrida, Phys. Rep. 301, 65 (1998) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  • L. Miettinen
    • 1
  • M. Myllys
    • 1
  • J. Merikoski
    • 1
  • J. Timonen
    • 1
  1. 1.Department of PhysicsUniversity of JyväskyläJyväskyläFinland

Personalised recommendations