Skip to main content
Log in

Dynamics and thermodynamics of a simple model similar to self-gravitating systems: the HMF model

  • Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

We discuss the dynamics and thermodynamics of the Hamiltonian Mean Field model (HMF) which is a prototypical system with long-range interactions. The HMF model can be seen as the one Fourier component of a one-dimensional self-gravitating system. Interestingly, it exhibits many features of real self-gravitating systems (violent relaxation, persistence of metaequilibrium states, slow collisional dynamics, phase transitions,...) while avoiding complicated problems posed by the singularity of the gravitational potential at short distances and by the absence of a large-scale confinement. We stress the deep analogy between the HMF model and self-gravitating systems by developing a complete parallel between these two systems. This allows us to apply many technics introduced in plasma physics and astrophysics to a new problem and to see how the results depend on the dimension of space and on the form of the potential of interaction. This comparative study brings new light in the statistical mechanics of self-gravitating systems. We also mention simple astrophysical applications of the HMF model in relation with the formation of bars in spiral galaxies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Dynamics and thermodynamics of systems with long range interactions, Lecture Notes in Physics, edited by T. Dauxois, S. Ruffo, E. Arimondo, M. Wilkens (Springer, 2002)

  • T. Padmanabhan, Phys. Rep. 188, 285 (1990)

    Article  Google Scholar 

  • P.H. Chavanis, Statistical mechanics of two-dimensional vortices and stellar systems, in: Dynamics and thermodynamics of systems with long range interactions, edited by T. Dauxois, S. Ruffo, E. Arimondo, M. Wilkens, Lecture Notes in Physics (Springer, 2002); e-print: cond-mat/0212223

  • V.A. Antonov, Vest. Leningr. Gos. Univ. 7, 135 (1962)

    Google Scholar 

  • D. Lynden-Bell, Runaway Centers, in: Extrait du Bulletin Astronomique, Série 3, Tome III, Fascicule 2 (Éditions du CNRS, 1968)

  • T. Konishi, K. Kaneko, J. Phys. A 25, 6283 (1992)

    Google Scholar 

  • S. Inagaki, T. Konishi, Publ. Astron. Soc. Jpn 45, 733 (1993)

    Google Scholar 

  • S. Inagaki, Prog. Theor. Phys. 90, 557 (1993)

    Google Scholar 

  • S. Inagaki, Prog. Theor. Phys. 96, 1307 (1996)

    Article  Google Scholar 

  • C. Pichon, Ph.D. thesis, Cambridge (1994)

  • D. Lynden-Bell, MNRAS 136, 101 (1967)

    Google Scholar 

  • M. Antoni, S. Ruffo, Phys. Rev. E 52, 2361 (1995)

    Article  Google Scholar 

  • T. Dauxois, V. Latora, A. Rapisarda, S. Ruffo, A. Torcini, The Hamiltonian Mean Field Model: from Dynamics to Statistical Mechanics and back, in: Dynamics and thermodynamics of systems with long range interactions, edited by T. Dauxois, S. Ruffo, E. Arimondo, M. Wilkens, Lecture Notes in Physics (Springer, 2002) cond-mat/0208456

  • S. Tremaine, M. Hénon, D. Lynden-Bell, MNRAS 227, 543 (1986)

    Google Scholar 

  • J. Binney, S. Tremaine, Galactic Dynamics (Princeton Series in Astrophysics, 1987)

  • Y.Y. Yamaguchi, J. Barré, F. Bouchet, T. Dauxois, S. Ruffo, Physica A 337, 36 (2004)

    Google Scholar 

  • P.H. Chavanis, 2004, cond-mat/0409641

  • P.H. Chavanis, A&A 432, 117 (2005)

    Google Scholar 

  • P.H. Chavanis, A&A 401, 15 (2003)

    Google Scholar 

  • P.H. Chavanis, A&A 381, 340 (2002)

    Google Scholar 

  • P.H. Chavanis, Phys. Rev. E 65, 056123 (2002)

    Article  Google Scholar 

  • J. Katz, MNRAS 183, 765 (1978)

    Google Scholar 

  • J. Katz, MNRAS 190, 497 (1980)

    Google Scholar 

  • J. Katz, Found. Phys. 33, 223 (2003)

    Article  Google Scholar 

  • S. Chandrasekhar, J. von Neumann, ApJ 95, 489 (1942)

    Article  Google Scholar 

  • P.H. Chavanis, C. Sire, Phys. Rev. E 62, 490 (2000)

    Article  Google Scholar 

  • D.D. Holm, J.E. Marsden, T. Ratiu, A. Weinstein, Phys. Rep. 123, 1 (1985)

    Article  Google Scholar 

  • P.H. Chavanis, C. Sire, 2004, cond-mat/0409569

  • M. Vergassola, B. Dubrulle, U. Frisch, A. Noullez, A&A 289, 325 (1994)

    Google Scholar 

  • J. Barré, F. Bouchet, T. Dauxois, S. Ruffo, Eur. Phys. J. B 29, 577 (2002)

    Google Scholar 

  • P.H. Chavanis, Phys. Rev. E 68, 036108 (2003)

    Article  Google Scholar 

  • F. Bouchet, J. Barré, J. Stat. Phys. 118, 1073 (2005)

    Article  MathSciNet  Google Scholar 

  • R. Ellis, K. Haven, B. Turkington, Nonlinearity 15, 239 (2002)

    Article  Google Scholar 

  • M.Y. Choi, J. Choi, Phys. Rev. Lett. 91, 124101 (2003)

    Article  PubMed  Google Scholar 

  • S. Ichimaru, Basic Principles of Plasma Physics, edited by W.A. Benjamin (Inc. Reading, Mass., 1973)

  • C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    Article  Google Scholar 

  • H. Brands, P.H. Chavanis, J. Sommeria and R. Pasmanter, Phys. Fluids 11, 3465 (1999)

    Article  Google Scholar 

  • P.H. Chavanis, 2004, cond-mat/0409511

  • P.H. Chavanis, J. Sommeria, R. Robert, ApJ 471, 385 (1996)

    Article  Google Scholar 

  • P.H. Chavanis, MNRAS 300, 981 (1998)

    Google Scholar 

  • P.H. Chavanis, C. Sire, Phys. Rev. E 69, 016116 (2004)

    Article  Google Scholar 

  • P.H. Chavanis, Banach Center Publ. 66, 79 (2004)

    Google Scholar 

  • S. Chandrasekhar, An Introduction to the Theory of Stellar Structure (Dover, New York, 1939)

  • H. Kandrup, ApJ 244, 316 (1981)

    Article  Google Scholar 

  • P.H. Chavanis, Phys. Rev. E 64, 026309 (2001)

    Article  Google Scholar 

  • P.H. Chavanis, unpublished notes (2003)

  • D. Dubin, T.M. O’Neil, Phys. Rev. Lett. 60, 1286 (1988)

    Article  PubMed  Google Scholar 

  • D. Dubin, Phys. Plasmas 10, 1338 (2003)

    Article  Google Scholar 

  • H. Kandrup, Astr. Space. Sci. 97, 435 (1983)

    Article  Google Scholar 

  • P.H. Chavanis, Physica A 332, 89 (2004)

    Google Scholar 

  • H. Risken, The Fokker-Planck equation (Springer, 1989)

  • F. Bouchet, Phys. Rev. E 70, 036113 (2004)

    Article  Google Scholar 

  • F. Bouchet, T. Dauxois 2004, cond-mat/0407703

  • S. Chandrasekhar, ApJ 99, 47 (1944)

    Article  Google Scholar 

  • Y.Y. Yamaguchi, Phys. Rev. E 68, 066210 (2003)

    Article  Google Scholar 

  • A. Pluchino, V. Latora, A. Rapisarda, Phys. Rev. E 69, 056113 (2004)

    Article  Google Scholar 

  • P.H. Chavanis, C. Rosier, C. Sire, Phys. Rev. E 66, 036105 (2002)

    Article  Google Scholar 

  • P.H. Chavanis, M. Ribot, C. Rosier, C. Sire, Banach Center Publ. 66, 103 (2004)

    Google Scholar 

  • P.H. Chavanis, P. Laurençot, M. Lemou, Physica A 341, 145 (2004)

    MathSciNet  Google Scholar 

  • B.M. Boghosian, Phys. Rev. E 53, 4754 (1996)

    Article  Google Scholar 

  • V. Latora, A. Rapisarda, C. Tsallis, Physica A 305, 129 (2002)

    Google Scholar 

  • A. Taruya, M. Sakagami, Physica A 322, 285 (2003)

    Google Scholar 

  • G.L. Camm, MNRAS 110, 305 (1950)

    Google Scholar 

  • M. Hénon, Astrophys. Space Sci. 14, 751 (1971)

    Google Scholar 

  • D. Lynden-Bell, R.M. Lynden-Bell, MNRAS 181, 405 (1977)

    Google Scholar 

  • J. Katz, I. Okamoto, MNRAS 317, 163 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. H. Chavanis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chavanis, P., Vatteville, J. & Bouchet, F. Dynamics and thermodynamics of a simple model similar to self-gravitating systems: the HMF model. Eur. Phys. J. B 46, 61–99 (2005). https://doi.org/10.1140/epjb/e2005-00234-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2005-00234-0

Keywords

Navigation