Exchange bias on epitaxial Ni films due to ultrathin NiO layer

Epitaxial systems

Abstract.

Exchange anisotropy refers to the effect that an antiferromagnetic (AF) layer grown in contact with a ferromagnetic (FM) layer has on the magnetic response of the FM layer. The most notable changes in the FM hysteresis loop due to the surface exchange coupling are a coercivity enhanced over the value typically observed in films grown on a nonmagnetic substrate, and a shift in the hysteresis loop of the ferromagnet away from the zero field axis. A typical observation is that the thickness of the antiferromagnet needs to exceed a critical value before exchange bias is observed. Here we report on the exchange bias properties observed in an epitaxial Ni/NiO system where a thin NiO layer forms spontaneously and is observed after annealing epitaxial Ni films MBE grown on MgO substrates.

Keywords

Anisotropy Hysteresis Loop Notable Change Layer Form Exchange Coupling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Bialas, K. Heneka, Vacuum 45, 79 (1994) CrossRefGoogle Scholar
  2. F. Reniers, M.P. Delplancke, A. Asskali, V. Rooryck, O. Van Sinay, Appl. Surf. Sci. 92, 35 (1996) CrossRefGoogle Scholar
  3. G. Raatz, J. Woltersdorf, Phys. Status Solidi (a) 113, 131 (1989) Google Scholar
  4. H. Nakai, H. Qui, M. Adamik, G. Sáfran, P.B. Barna, M. Hashimoto, Thin solid Films 263, 159 (1995) CrossRefGoogle Scholar
  5. R.H. Hoel, J.M. Penisson, H.U. Habermeier, J. Phys. Colloq. France C1-51 (1990) Google Scholar
  6. H. Sato, R.S. Toth, R.W. Astrue, J. Appl. Phys. 33, 1113 (1962) CrossRefGoogle Scholar
  7. A.A. Hussain, J. Phys.: Condens. Matter 1, 9833 (1989) CrossRefGoogle Scholar
  8. H. Bialas, L.-S. Li, Phys. Status Solidi (a) 42, 125 (1977) Google Scholar
  9. N.I. Kiselev, Yu.I. Man’kov, V. G. Pyn’ko, Sov. Phys. Solid State 31, 685 (1989) Google Scholar
  10. H. Maruyama, H. Qiu, H. Nakai, M. Hashimoto, J. Vac. Sci. Technol. A 13, 2157 (1995) CrossRefGoogle Scholar
  11. H. Qiu, A. Kosuge, H. Maruyama, M. Adamik, G. Safran, P.B. Barna, M. Hashimoto, Thin Solid Films 241, 9 (1994) CrossRefGoogle Scholar
  12. M.R. Fitzsimmons, G.S. Smith, R. Pynn, M.A. Nastasi, E. Burkel, Physica B 198, 169 (1994) Google Scholar
  13. A. Barbier, G. Renaud, O. Robach, J. Appl. Phys. 84, 4259 (1998) CrossRefGoogle Scholar
  14. E.B. Svedberg, P. Sandström, J.-E. Sundgren, J.E. Greene, L.D. Madsen, Surf. Sci. 429, 206 (1999) CrossRefGoogle Scholar
  15. R.A. Lukaszew, V. Stoica, C. Uher, R. Clarke, Mat. Res. Soc. Symp. Proc. 648, 3.29.1 (2001) Google Scholar
  16. C.-H. Lai, W.-C. Lien, R.L. White, J. Appl. Phys. 89, 1302 (2001) Google Scholar
  17. R.A. Lukaszew, to be published in Phys. Rev. B (2005) Google Scholar
  18. G.Pacchioni, N. Rösch, J. Chem. Phys. 104, 7329 (1996) Google Scholar
  19. N. Rösch, G. Pacchioni, in Chemisorption and Reactivity on Supported Clusters and Thin Films, edited by R.M. Lambert, G. Pacchioni (Klumer-Academic, The Netherlands, 1997), p. 353 Google Scholar
  20. R.P. Michel, A. Chaiken, C.T. Wang, L.E. Johnson, Phys. Rev. B 58, 8566 (1998) CrossRefGoogle Scholar
  21. Z.W. Liu, S. Adenwalla, Appl. Phys. Lett. 82, 2106 (2003) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  1. 1.University of ToledoToledoUSA
  2. 2.IMRE, National University of SingaporeSingaporeSingapore

Personalised recommendations