Isotropic ferromagnetic resonance field shift in as-prepared permalloy/FeMn bilayers

  • S. J. Yuan
  • Y. X. Sui
  • S. M. Zhou
Surfaces and Interfaces


Exchange-coupled wedged-permalloy (Py)/FeMn bilayers are studied by ferromagnetic resonance (FMR) technique at room temperature. In comparison, Py single layer films were also made. For Py single layer films and Py/FeMn bilayers, only one uniform resonance peak was observed at high magnetic fields, indicating no interfacial diffusion at the Py/FeMn and Py/Cu interfaces. Negative isotropic in-plane resonance field does exist in Py/FeMn bilayers and its magnitude increases with decreasing Py layer thickness. In order to explain above phenomena, interfacial perpendicular anisotropy must be considered simultaneously, in addition to irreversible rotation of spins in FeMn layers. This is because the perpendicular resonance field of the bilayers is larger than that of Py single layer films.


Spectroscopy Magnetic Field Neural Network Anisotropy Layer Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. W.H. Meiklejohn, C.P. Bean, Phys. Rev. 102, 1413 (1956) CrossRefGoogle Scholar
  2. See e.g., J. Nogués, I.K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999) CrossRefGoogle Scholar
  3. B. Dieny, V.S. Speriosu, S.S.P. Parkin, B.A. Gurney, D.R. Wilhoit, D. Mauri, Phys. Rev. B 43, 1297 (1991) CrossRefGoogle Scholar
  4. V.I. Nikitenko, V.S. Gornakov, L.M. Dedukh et al., Phys. Rev. B 57, R8111 (1998) Google Scholar
  5. R.D. McMichael, M.D. Stiles, P.J. Chen, W.F. Egelhoff, Jr. Phys. Rev. B 58, 8605 (1998) CrossRefGoogle Scholar
  6. W. Stoecklein, S.S.P. Parkin, J.C. Scott, Phys. Rev. B 38, 6847 (1988) CrossRefGoogle Scholar
  7. R.L. Stamps, R.E. Camley, R.J. Hicken, Phys. Rev. B 54, 4159 (1996) CrossRefGoogle Scholar
  8. S.M. Zhou, L. Sun, P.C. Searson, C.L. Chien, Phys. Rev. B 69, 024408 (2004) CrossRefGoogle Scholar
  9. K. Nakamura, Tomonori Ito, A.J. Freeman, Phys. Rev. B 70, 060404(R) (2004) CrossRefGoogle Scholar
  10. M.D. Stiles, R.D. McMichael, Phys. Rev. B 59, 3722 (1999) CrossRefGoogle Scholar
  11. H.W. Xi, K.R. Mountfield, R.M. White, J. Appl. Phys. 87, 4367 (2000) CrossRefGoogle Scholar
  12. S.M. Zhou, S.J. Yuan, M. Lu, J. Du, A. Hu, J.T. Song, Appl. Phys. Lett. 83, 2013 (2003) CrossRefGoogle Scholar
  13. S. Mizukami, Y. Ando, T. Miyazaki, Jpn J. Appl. Phys. 40, 580 (2000) CrossRefGoogle Scholar
  14. S.J. Yuan, L. Wang, R. Shan, S.M. Zhou, Appl. Phys. A 79, 703 (2004) CrossRefGoogle Scholar
  15. M. Rubinstein, P. Lubitz, S.F. Cheng, J. Magn. Magn. Mater. 195, 299 (1999) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  1. 1.Surface Physics Laboratory (State Key Laboratory) and Department of Physics, Fudan UniversityShanghaiChina
  2. 2.Department of PhysicsShanghai UniversityShanghaiChina
  3. 3.Center for Material Analysis and Measurements, Nanjing UniversityNanjingChina

Personalised recommendations