EPR study of Mn2+ doped nanocrystalline PbF2

  • P. Thangadurai
  • S. Ramasamy
  • T. K. Kundu
  • P. T. Manoharan
Solid and Condensed State Physics


Nanocrystalline samples of PbF2 doped with 0.05, 0.1, 0.4 and 1 mol% Mn2+, used as paramagnetic probe, were prepared by inert gas condensation technique. All the samples were vacuum annealed at different temperatures to get different grain sizes. The X-ray diffraction studies showed the dominant content of β-PbF2 phase with a fractional quantity of α-PbF2. Thermal stability and sublattice melting were studied by TGA and DSC respectively. EPR measurements were made on all these samples at 77 and 300 K. The EPR spectra of all samples were found to contain well resolved sextet arising from the Mn2+ ions that occupied the cubic sites of Pb2+ ion of PbF2 lattice. The lower concentration of the Mn2+ ions (0.05 and 0.1 mol%) clearly monitored the Pb2+ environment in the PbF2 lattice. The 0.4 mol% showed the presence of only the cubic sites with a minor concentration of the orthorhombic sites. The spectra corresponding to 1 mol% Mn2+ clearly showed two different components. The isotropic nature of the 1 mol% as-prepared sample implied that there was no cluster formation and hence this EPR spectrum was taken as the single ion spectrum. The annealed samples contain two spectral components; one is from the isolated single ions and the other one from the Mn2+ clusters. The spectral component of Mn2+ clusters was obtained by subtracting the spectrum for the as-prepared sample for the spectra of annealed samples. The extracted cluster phase spectra and the pure spectrum from the as-prepared sample were then combined to simulate the entire set of experimental spectra. The simulated spectra were found to be in good agreement with the experimental data. The g values obtained were in the range very close to the free electron g factor as the electrons are in the S state (L=0).


Annealed Sample Spectral Component PbF2 Cluster Phase Fractional Quantity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. H. Gleiter, Prog. Mater. Sci. 33, 223 (1989) CrossRefGoogle Scholar
  2. J.H. Kennedy, R. Miles, J. Hunter, J. Electrochem. Soc.: Electrochem. Sci. Tech. 120, 1441 (1973) Google Scholar
  3. N. Egashira, H. Kokado, Jpn J. Appl. Phys. 25, L462 (1986) Google Scholar
  4. G.A. Samara, Ferroelectrics 17, 357 (1977) Google Scholar
  5. G.A. Samara, J. Phys. Chem. Solids 40, 509 (1978) CrossRefGoogle Scholar
  6. P. Thangadurai, S. Ramasamy, P.T. Manoharan, Eur. Phys. J. B 37, 425 (2004) Google Scholar
  7. F. Fayon, I. Farnan, C. Bessada, J. Coutures, D. Massiot, J.P. Coutures, J. Am. Chem. Soc. 119, 6837 (1997) CrossRefGoogle Scholar
  8. F. Wang, C.P. Grey, J. Am. Chem. Soc. 120, 970 (1998) CrossRefGoogle Scholar
  9. H.W. Den Hartog, Phys. Rev. B 27, 20 (1983) CrossRefGoogle Scholar
  10. W. Low, Phys. Rev. 105, 793 (1957) CrossRefGoogle Scholar
  11. R. Hogg, S.P. Vernon, V. Jaccarino, Phy. Rev. Lett. 39, 481 (1977) CrossRefGoogle Scholar
  12. B. Rose, E. Schneider, Phys. Lett. A 34, 27 (1971) CrossRefGoogle Scholar
  13. J. ten Eicken, W. Gunsser, S.V. Chernov, I.V. Murin, Ber. Bunsenges. Phys. Chem. 96, 1723 (1992) Google Scholar
  14. J. ten Eicken, W. Gunsser, S.V. Chernov, A.V. Glumov, I.V. Murin, Solid State Ionics 53-56, 843 (1992) Google Scholar
  15. K.K. Chan, L. Shields, J. Phys. C: Solid State Phys. 3, 292 (1970) CrossRefGoogle Scholar
  16. K.K. Chan, L. Shields, J. Phys. C: Solid State Phys. 2, 1978 (1969) CrossRefGoogle Scholar
  17. C. Evora, V. Jaccarino, Phy. Rev. Lett. 39, 1554 (1977) CrossRefGoogle Scholar
  18. B.D. Cullity, in Elements of X-ray Diffraction (Addison-Wesley, 1977), p. 81 Google Scholar
  19. J.P. Goff, W. Hayes, S. Hull, M.T. Hutchings, J. Phys.: Condens. Matter 3, 3677 (1991) Google Scholar
  20. A.B. Kulakov, A.A. Zhokhov, G.A. Emel’chenko, N.V. Klassen, J. Cryst. Growth 151, 107 (1995) Google Scholar
  21. D.S. Rimai, R.J. Sladek, Solid State Commun. 31, 473 (1979) CrossRefGoogle Scholar
  22. B.F. Naylor, J. Am. Chem. Soc. 67, 150 (1945) CrossRefGoogle Scholar
  23. C.E. Derrington, A. Navrotsky, M. O’Keeffe, Solid State Commun. 18, 47 (1976) Google Scholar
  24. M. Griffel, J.W. Stout, J. Am. Chem. Soc. 72, 4351 (1950) CrossRefGoogle Scholar
  25. T.H. Yeom, Y.H. Lee, T.S. Hahn, M.H. Oh, S.H. Choh, J. Appl. Phys. 79, 1004 (1996) Google Scholar
  26. Y.H. Lee, D.H. Kim, B.K. Ju, M.H. Song, T.S. Hahn, S.H. Choh, M.H. Oh, J. Appl. Phys. 78, 4253 (1995) CrossRefGoogle Scholar
  27. K.K. Stavrev, K.D. Nynev, G.St. Nikolov, J. Cryst. Growth 101, 376 (1990) CrossRefGoogle Scholar
  28. K.K. Stavrev, S.I. Ivanov, K.D. Kvnev, G. St. Nikolov, J. Solid State Chem. 86, 136 (1990) Google Scholar
  29. W. Hayes, D.A. Jones, Proc. Phys. Soc. 71, 503 (1958) CrossRefGoogle Scholar
  30. A.J. Tench, R.L. Nelson, Proc. Phys. Soc. 92, 1055 (1967) CrossRefGoogle Scholar
  31. P. Thangadurai, S. Ramasamy, R. Kesavamoorthy, J. Phys.: Condens. Matter, 17, 863 (2005) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  • P. Thangadurai
    • 1
  • S. Ramasamy
    • 1
  • T. K. Kundu
    • 2
  • P. T. Manoharan
    • 2
  1. 1.Department of Nuclear PhysicsUniversity of MadrasChennaiIndia
  2. 2.Regional Sophisticated Instrumentation Centre, Indian Institute of Technology MadrasChennaiIndia

Personalised recommendations