Magnetism of mixed valence (LaSr) hexaferrites

  • P. Novák
  • K. Knížek
  • M. Küpferling
  • R. Grössinger
  • M. W. Pieper
Solid and Condensed State Physics


The electronic structure of LaxSr1-xFe12O19 (x=0, 0.25, 0.5, 0.75, 1) hexaferrite is calculated using the density functional theory and generalized gradient approximation (GGA). The GGA+U method is used to improve the description of strongly correlated 3d electrons of Fe. The ‘virtual crystal’ approach is employed for the fractional x, its applicability is checked for x=0.5 by comparing it with the supercell method. The electronic charges introduced by the La substitution show no significant preference for any of the iron sublattices. The magnetic moment decreases linearly with the increasing La content in agreement with the experiment.


Iron Spectroscopy Neural Network State Physics Complex System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. H. Kojima, Ferromagnetic Materials, edited by E.P. Wolfarth (North-Holland, Amsterdam, 1982), Vol. 3 Google Scholar
  2. F.K. Lotgering, J. Phys. Chem. Solids 35, 1633 (1974)Google Scholar
  3. V.L. Moruzzi, M.W. Shafer, J. Am. Ceramic Soc. 43, 367 (1960)Google Scholar
  4. J.F. Wang, C.B. Ponton, I.R. Harris, J. Magn. Magn. Mater. 234, 233 (2001)Google Scholar
  5. Ch. Sauer, U. Köbler, W. Zinn, J. Phys. Chem. Solids 39, 1197 (1978)Google Scholar
  6. C.M. Fang, F. Kools, R. Metselaar, G. de With, R.A. de Groot, J. Phys.: Condens Matter 15, 6229 (2003)Google Scholar
  7. E.W. Gorter, Proc. IEEE 104B, 255 (1957)Google Scholar
  8. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An Augmented PlaneWave + Local Orbitals Program for Calculating Crystal Properties, Karlheinz Schwarz, Techn. Universtät Wien Austria, 2001. ISBN 3-9501031-1-2 Google Scholar
  9. V. Adelsköld, Arkiv för Kemi, Mineralogi Och Geologi 12A, 29 (1938)Google Scholar
  10. G. Albanese, J. Phys. Colloq. France 38, C1-85 (1977)Google Scholar
  11. D. Singh, Plane waves, pseudopotentials and the LAPW method (Kluwer Academic, 1994) Google Scholar
  12. J.P. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)CrossRefGoogle Scholar
  13. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13 244 (1992) Google Scholar
  14. Z. Yang, Z. Huang, L. Ye, X. Xie, Phys. Rev. B 60, 15674 (1999)Google Scholar
  15. A.I. Liechtenstein, V.I. Anisimov, J. Zaanen, Phys. Rev. B 52, 5467 (1995)Google Scholar
  16. I. Solovyev, N. Hamada, K. Terakura, Phys. Rev. B 53, 7158 (1996)Google Scholar
  17. R. Zimmerman, P. Steiner, R. Claessen. F. Reinert, S. Hüfner, P. Blaha, P. Dufek, J. Phys.: Condens. Matter 11, 1657 (1999)Google Scholar
  18. W.E. Pickett, D.J. Singh, Phys. Rev. B 55, 8642 (1997)Google Scholar
  19. P. Novák, F. Boucher, P. Gressier, P. Blaha, K. Schwarz, Phys. Rev. B 63, 235114 (2001)Google Scholar
  20. M.W. Pieper, M. Küpferling, unpublished data Google Scholar
  21. M.W. Pieper, M. Küpferling, I.R. Harris, J.F. Wang, J. Mag. Mag. Mat. 272-276, 2219 (2004)Google Scholar
  22. G. Madsen, P. Novák, Europhys. Lett. 69, 777 (2005)Google Scholar
  23. K. Koepernik, B. Velický, R. Hayn, H. Eschrig, Phys. Rev. B 58, 6944 (1988)Google Scholar
  24. R.F.W. Bader, faculty/bader/aim/, 2001 Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  • P. Novák
    • 1
  • K. Knížek
    • 1
  • M. Küpferling
    • 2
  • R. Grössinger
    • 2
  • M. W. Pieper
    • 2
  1. 1.Institute of Physics of ASCRPrague 6Czech Republic
  2. 2.Institute for Solid State Physics, Technical University ViennaViennaAustria

Personalised recommendations