Interaction effects on persistent current of ballistic cylindrical nanostructures

  • S. PleutinEmail author
Mesoscopic Physics


We investigate clean cylindrical nanostructures with an applied longitudinal static magnetic field. The ground state of these systems becomes degenerate for particular values of the field due to Aharonov-Bohm effect. The Coulomb interaction introduces couplings between the electronic configurations. Consequently, depending on particular selection rules, the ground state may become, in the interacting case, a many body state at the degeneracy points: a gap is then opened. To study this problem, we propose a variational multireference wave function which goes beyond the Hartree-Fock approximation. Using this ansatz, in addition to the replacements of some crossings by avoided crossings, two other important effects of the electron-electron interaction are pointed out: (i) the long-range part of the Coulomb potential tends to shift the position in magnetic field of the crossing or avoided crossing points and, (ii) at the points of degeneracy or near degeneracy, the interaction can drive the system from a singlet to a triplet state inducing new real crossing points in the ground state energy curve as function of the field. In any case, the crossing points that are due to either orbital or spin effects, should manifest themselves in various experiments as sudden changes in the response of the system (magnetoconductance, magnetopolarisability, ...) when the magnetic field is tuned.


Magnetic Field Body State Triplet State Coulomb Interaction Ground State Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. P. Ehrenfest, Physica 5, 388 (1925); P. Ehrenfest, Z. Phys. 58, 719 (1929); L. Pauling, J. Chem. Phys. 4, 673 (1936); F. London, J. Phys. Radium 8, 397 (1937) Google Scholar
  2. Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959)zbMATHMathSciNetADSGoogle Scholar
  3. N. Byers, C.N. Yang, Phys. Rev. Lett. 7, 46 (1961)CrossRefADSGoogle Scholar
  4. L.P. Levy, G. Dolan, J. Dunsmuir, H. Bouchiat, Phys. Rev. Lett. 64, 2074 (1990); V. Chandrasekhar, R.A. Webb, M.J. Brady, M.B. Ketchen, W.J. Gallagher, A. Kleinsasser, Phys. Rev. Lett. 67, 3578 (1991); D. Mailly, C. Chapelier, A. Benoit, Phys. Rev. Lett. 70, 2020 (1993); E.M.Q. Jariwala, P. Mohanty, M.B. Ketchen, R.A. Webb, Phys. Rev. Lett. 86, 1594 (2001)ADSGoogle Scholar
  5. S. Iijima, Nature 354, 56 (1991); S. Iijima, T. Ishihashi, Nature 363, 603 (1993) CrossRefADSGoogle Scholar
  6. A. Bachtold, C. Strunk, J.P. Salvetat, J.M. Bonard, L. Forro, T. Nussbaumer, C. Schönenberger, Nature 397, 673 (1999)ADSGoogle Scholar
  7. H. Ajiki, T. Ando, J. Phys. Soc. Jpn 62, 1255 (1993); S. Zaric, G.N. Ostojic, J. Kono, J. Shaver, V.C. Moore, M.S. Strano, R.H. Hauge, R.E. Smalley, X. Wei, Science 304, 1129 (2004); E.D. Minot, Y. Yaish, V. Sazonova, P.L. McEuen, Nature 428, 536 (2004); J. Cao, Q. Wang, M. Rolandi, H. Dai, Phys. Rev. Lett. 93, 216803 (2004) ADSGoogle Scholar
  8. H.R. Shea, R. Martel, Ph. Avouris, Phys. Rev. Lett. 84, 4441 (2000)ADSGoogle Scholar
  9. S. Latil, S. Roche, A. Rubio, Phys. Rev. B 67, 165420 (2003) CrossRefADSGoogle Scholar
  10. M. Büttiker, Y. Imry, R. Landauer, Phys. Lett. A 96, 365 (1983) CrossRefADSGoogle Scholar
  11. P. Mohanty, Ann. Phys. (Leipzig) 8, 549 (1999); U. Eckern, P. Schwab, J. Low. Temp. Phys. 126, 1291 (2001) ADSGoogle Scholar
  12. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, 1998) Google Scholar
  13. A.A. Ovchinnikov, Phys. Lett. A 195, 95 (1994)ADSGoogle Scholar
  14. M. Szopa, M. Margańska, E. Zipper, Phys. Lett. A 299, 593 (2002)ADSGoogle Scholar
  15. F.V. Kusmartsev, J. Phys.: Condens. Matter 3, 3199 (1991); N. Yu, M. Fowler, Phys. Rev. B 45, 11 795 (1992) ADSGoogle Scholar
  16. R. Kotlyar, C.A. Stafford, S. Das Sarma, Phys. Rev. B 58, 3989 (1998)ADSGoogle Scholar
  17. A. Müller-Groeling, H.A. Weidenmüller, C.H. Lewenkoff, Europhys. Lett. 22, 193 (1993)ADSGoogle Scholar
  18. K. Niemelä, P. Pietiläinen, P. Hyvönen, T. Chakraborty, Europhys. Lett. 36, 533 (1996)ADSGoogle Scholar
  19. D. Loss, Phys. Rev. Lett. 69, 343 (1992)ADSGoogle Scholar
  20. F.V. Kusmartsev, JETP Lett. 60, 649 (1994)ADSGoogle Scholar
  21. G. Bouzerar, D. Poilblanc, Phys. Rev. B 52, 10 772 (1995); M. Ramin, B. Reulet, H. Bouchiat, Phys. Rev. B 51, 5582 (1995)Google Scholar
  22. H.F. Cheung, Y. Gefen, E. Riedel, IBM J. Res. Develop. 32, 359 (1988)CrossRefGoogle Scholar
  23. P. Fulde, A.A. Ovchinnikov, Eur. Phys. J. B 17, 623 (2000); S. Pleutin, A.A. Ovchinnikov, Eur. Phys. J. B 23, 521 (2001); S. Pleutin, A.A. Ovchinnikov, Ann. Phys. (Leipzig) 11, 411 (2002)ADSGoogle Scholar
  24. M. Stebelski, M. Szopa, E. Zipper, Z. Phys. B 103, 79 (1997)ADSGoogle Scholar
  25. S. Roche, G. Dresselhaus, M.S. Dresselhaus, R. Saito, Phys. Rev. B 62, 16092 (2000)CrossRefADSGoogle Scholar
  26. E.N. Bogachek, G.A. Godadze, Zh. Eksp. Teor. Fiz. 63, 1839 (1972) [Soviet Phys.-JETP 36, 973 (1973)]; I.O. Kulik, ZhETF Pis. Red. 11, 407 (1970) [JETP Lett. 11, 275 (1970)] Google Scholar
  27. L. Salem, The Molecular Orbital Theory of Conjugated Systems, Benjamin, New York, 1966; D. Baeriswyl, D.K. Campbell, S. Mazumdar, in Conjugated Conducting Polymers, edited by H. Kiess (Springer-Verlag, Heidelberg, 1992), pp. 7–133 Google Scholar
  28. A. Müller-Groeling, H.A. Weidenmüller, Phys. Rev. B 49, 4752 (1994) ADSGoogle Scholar
  29. M. Kamal, Z.H. Musslimani, A. Auerbach, J. Phys. I France 5, 1487 (1995)Google Scholar
  30. J. Frenkel, Wave Mechanics, Advanced General Theory (Clarendon Press, Oxford, 1934) Google Scholar
  31. E. Dalgaard, P. Jorgensen, J. Chem. Phys. 69, 3833 (1978) ADSGoogle Scholar
  32. B. Levy, G. Berthier, Int. J. Quantum Chem. 2, 307 (1968) Google Scholar
  33. L. Wendler, V.M. Fomin, Phys. Rev. 51, 17814 (1995); L. Wendler, V.M. Fomin, A.V. Chaplik, Sol. Stat. Comm. 96, 809 (1995)Google Scholar
  34. Y. Oreg, K. Byczuk, B.I. Halperin, Phys. Rev. Lett. 85, 365 (2000) ADSGoogle Scholar
  35. H.U. Baranger, D. Ullmo, L.I. Glazman, Phys. Rev. B 61, R2425 (2000) Google Scholar
  36. R. Deblock, Y. Noat, H. Bouchiat, B. Reulet, D. Mailly, Phys. Rev. Lett. 84, 5379 (2000) ADSGoogle Scholar
  37. M.R. Buitelaar, A. Bachtold, T. Nussbaumer, M. Iqbal, C. Schönenberger, Phys. Rev. Lett. 88, 156801 (2002) ADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  1. 1.Physikalisches Institut, Albert-Ludwigs-UniversitätFreiburgGermany

Personalised recommendations