Acoustic radiation force due to incident plane-progressive waves on coated spheres immersed in ideal fluids

  • F. G. MitriEmail author
Statistical and Nonlinear Physics


In this study, the acoustic radiation force resulting from the interaction of a plane progressive wave with a coated sphere was examined. The linear acoustic scattering problem was obtained first by solving the classical boundary conditions to obtain the required coefficients. The radiation force was then determined by averaging the momentum flux tensor expressed in terms of the total scattering pressure or velocity potential in an ideal fluid. Numerical calculations of the radiation force function Yp , which is the radiation force per unit energy density and unit cross-section, were displayed versus the dimensionless size parameter x=k1 b (k1 is the wave number in the exterior fluid and b the radius of the uncoated sphere) over a large range of frequencies. Particular emphasis has been focused on the coating thickness and the absorption of sound inside the outer covering layer. The fluid-loading effect on the radiation force function curves was also analysed.


Radiation Force Sound Absorption Layered Sphere Viscoelastic Layer Acoustic Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. R.W.S. Rayleigh, Philos. Mag. 3, 338 (1902)Google Scholar
  2. L.V. King, Proc. R. Soc. London Ser. A 147, 212 (1935)ADSGoogle Scholar
  3. K. Yosioka, Y. Kawasima, Acustica 5, 167 (1955)Google Scholar
  4. G. Maindanik, P.J. Westervelt, J. Acoust. Soc. Am. 29, 936 (1957) CrossRefADSGoogle Scholar
  5. L.P. Gor’kov, Sov. Phys. Dokl. 6, 773 (1962) ADSGoogle Scholar
  6. W.L. Nyborg, J. Acoust. Soc. Am. 42, 947 (1967) CrossRefADSGoogle Scholar
  7. T. Hasegawa, K. Yosioka, J. Acoust. Soc. Am. 46, 1139 (1969) zbMATHCrossRefADSGoogle Scholar
  8. L.A. Crum, J. Acoust. Soc. Am. 50, 157 (1971)CrossRefADSGoogle Scholar
  9. A.A. Doinikov, J. Acoust. Soc. Am. 101, 713 (1997) CrossRefADSGoogle Scholar
  10. A.A. Doinikov, J. Acoust. Soc. Am. 101, 722 (1997) CrossRefADSGoogle Scholar
  11. A.A. Doinikov, J. Acoust. Soc. Am. 101, 731 (1997) CrossRefADSGoogle Scholar
  12. S.D. Danilov, M.A. Mironov, J. Acoust. Soc. Am. 107, 143 (2000)CrossRefADSGoogle Scholar
  13. F. Dunn, A.J. Averbuch, D.J. O’Brien, Acustica 38, 58 (1977) Google Scholar
  14. A.C. Eringen, E.S. Suhubi, Elastodynamics (Academic, New York, 1975) Google Scholar
  15. A.E.H. Love, A treatise on the mathematical theory of elasticity (Dover, New York, 1944) Google Scholar
  16. A.K. Hipp, L.P. Adjadj, G. Storti, M. Morbidelli, J. Acoust. Soc. Am. 111, 1549 (2002)CrossRefADSGoogle Scholar
  17. L.W. Anson, R.C. Chivers, J. Acoust. Soc. Am. 69, 1618 (1981)CrossRefADSGoogle Scholar
  18. T. Hasegawa, Y. Hino, A. Annou, H. Noda, M. Kato, J. Acoust. Soc. Am. 93, 154 (1993) CrossRefADSGoogle Scholar
  19. F.G. Mitri, Z.E.A. Fellah, J.Y. Chapelon, J. Acoust. Soc. Am. 115, 1411 (2004) CrossRefADSGoogle Scholar
  20. F.G. Mitri, Wave Motion (2005) (submitted) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  1. 1.Mayo Clinic College of Medicine and Foundation, Department of Physiology and Biomedical EngineeringUltrasound Research LaboratoryRochesterUSA

Personalised recommendations