Advertisement

The H+ related defects involved in domain reversal for both near-stoichiometric and heavily Mg-doped lithium niobate crystals

  • W. YanEmail author
  • Y. Kong
  • L. Shi
  • J. Yao
  • S. Chen
  • L. Sun
  • D. Zhao
  • J. Xu
  • G. Zhang
Solid and Condensed State Physics

Abstract.

Domain reversal was performed on both near-stoichiometric and heavily Mg-doped lithium niobate crystals. H+ related defect structures in these two types of crystals were studied through the infrared absorption spectra. It is found that the intensity of some decomposed peaks of absorption band change apparently during domain reversal for near-stoichiometric lithium niobate crystals but not for heavily Mg-doped lithium niobate crystals. According to these experimental results, distinct models about H+ related defect structure in LiNbO3 lattice were supposed for them. Nb4+Li and Mg3-Nb were considered as the centers of H+ related defect complex for near-stoichiometric and heavily Mg-doped lithium niobate crystals respectively. Different behavior of them was used to explain the difference of infrared absorption spectra during domain reversal between two types of crystals.

Keywords

Spectroscopy Neural Network Lithium State Physics Absorption Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Kong, W. Zhang, X. Chen, J. Xu, G. Zhang, J. Phys.: Condens. Matter 11, 2139 (1999)Google Scholar
  2. Y. Furukawa, K. Kitamura, S. Takekawa, K. Niwa, Y. Yajima, N. Iyi, I. Mnushkina, P. Guggenheim, J.M. Martin, J. Cryst. Growth 211, 230 (2000)Google Scholar
  3. R.G. Smith, D.B. Fraser, R.T. Denton, T.C. Rich, J. Appl. Phys. 39, 4600 (1968)Google Scholar
  4. J.M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, E. Diéguez, Adv. Phys. 45, 349 (1996)Google Scholar
  5. M. Wöhlecke, L. Kovács, Critical Reviews in Solid State and Materials Sciences 26, 1 (2001)Google Scholar
  6. V. Gopalan, M.C. Gupta, J. Appl. Phys. 80, 6099 (1996)Google Scholar
  7. N. Iyi, K. Kitamura, F. Izumi, J.K. Yamamoto, T. Hayashi, H. Asano, S. Kimura, J. Solid. State. Chem. 101, 340 (1992)Google Scholar
  8. S. Kojima, Jpn J. Appl. Phys. Part 1 32, 4373 (1993)Google Scholar
  9. J. Blumel, E. Born, T. Metzger, J. Phys. Chem. Solids 55, 589 (1994)Google Scholar
  10. K. Polgár, A. Peter, L. Kovács, G. Corradi, Z. Szaller, J. Cryst. Growth 177, 211 (1997)Google Scholar
  11. R.L. Holman, in Processing of Crystalline Ceramics, edited by H. Palmour, R.F. Davis, T.M. Hare (Plenum, New York, 1978), p. 343 Google Scholar
  12. Y. Kong, J. Xu, W. Zhang, G. Zhang, J. Phys. Chem. Solids 61, 1331 (2000)Google Scholar
  13. S. Kim, V. Gopalan, K. Kitamura, Y. Furukawa, J. Appl. Phys. 90, 2949 (2001)Google Scholar
  14. S. Klauer, M. Wöhlecke, S. Kapphan, Phys. Rev. B 45, 2786 (1992)Google Scholar
  15. A. Grone, S. Kapphan, J. Phys. Chem. Solids 56, 687 (1995)Google Scholar
  16. J. Liu, W. Zhang, G. Zhang, Phys. Stat. Sol. (a) 156, 285 (1996)Google Scholar
  17. M. Wöhlecke, G. Corradi, K. Betzler, Appl. Phys. B 63, 323 (1996)Google Scholar
  18. K. Lengyel, L. Kovács, G. Mandula, R. Rupp, Ferroelectrics 257, 255 (2001)Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  • W. Yan
    • 1
    Email author
  • Y. Kong
    • 1
  • L. Shi
    • 1
  • J. Yao
    • 2
  • S. Chen
    • 1
  • L. Sun
    • 1
  • D. Zhao
    • 1
  • J. Xu
    • 2
  • G. Zhang
    • 2
  1. 1.R&D Center for Photon-Electro materials, Nankai UniversityTianjinChina
  2. 2.Photonics Center, College of Physical Science, Nankai UniversityTianjinChina

Personalised recommendations