Polaron properties in ternary group-III nitride mixed crystals

  • Z. W. YanEmail author
  • S. L. Ban
  • X. X. Liang
Solid and Condensed State Physics


Polaron properties are studied in bulk wurtzite nitride ternary mixed crystals AxB1-xN (A, B = Al, Ga, In) with the use of a dielectric continuum Fröhlich-like electron-phonon interaction Hamiltonian. The polaronic self-trapping energy and effective mass are analytically derived by taking the mixing properties of the LO and TO polarizations due to the anisotropy effect into account in the mono-phonon approximation. The numerical computation has been performed for the wurtzite ternary mixed crystal materials InxGa1-xN, AlxGa1-xN, and AlxIn1-xN as functions of the composition x. The results show that the polaronic self-trapping energies in the wurtzite structures are bigger than that in zinc-blende structures for the materials calculated. It is also found that the structure anisotropy increases the electron-phonon interaction in wurtizte nitride semiconductors. The results indicate that the LO-like phonon influence on the polaronic self-trapping energy and effective mass is dominant, and the anisotropy effect is obvious.


Spectroscopy Neural Network Anisotropy Nitride Complex System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. S. Nakamura, The Blue Laser Diode-GaN Based Light Emitters and Lasers (Springer, Berlin, 1997) Google Scholar
  2. S. Strite, H. Morkoc, J. Vac. Sci. Technol. B 10, 1237 (1992) Google Scholar
  3. C. Bungaro, K. Rapcewicz, J. Bernholc, Phys. Rev. B 61, 6720 (2000)CrossRefGoogle Scholar
  4. S.G. Yu, K.W. Kim, L. Bergman, M. Dutta, M.A. Stroscio, M. Zavada, Phys. Rev. B 58, 15283 (1998)Google Scholar
  5. H. Grille, C. Schnittler, F. Bechstedt, Phys. Rev. B 61, 6091 (2000)Google Scholar
  6. A. Kasic, M. Schubert, J. Off, F. Scholz, Appl. Phys. Lett. 78, 1256 (2001)Google Scholar
  7. I.F. Chang, S.S. Mitria, Adv, Phys. 20, 359 (1971)Google Scholar
  8. X.X. Liang, S.L. Ban, Chinese Physics 13, 71 (2004)Google Scholar
  9. R. Loudon, Adv. Phys. 13, 423 (1996); W. Hayes, R. Loudon, Scatting of Light by Crystals (Wiley, New York, 1978)Google Scholar
  10. J.T. Devreese, Polarons in Ionic Crystals and Polar Semiconductors (North-Holland, Amsterdam, 1972) Google Scholar
  11. N. Mori, T. Ando, Phys. Rev. B 40, 6175 (1989)Google Scholar
  12. Z.W. Yan, S.L. Ban, X.X. Liang, Eur. Phys. J. B 35, 41 (2003)Google Scholar
  13. F.M. Peeters, J.T. Devreese, Phys. Rev. B 36, 4442 (1987)Google Scholar
  14. J.E. Zucker, A. Pinczuk, D.S. Chemla, A. Gossard, W. Wiegmann, Phys. Rev. Lett. 53, 1280 (1984)Google Scholar
  15. B.C. Lee, K.W. Kim, M. Dutta, M.A. Stroscio, Phys. Rev. B 56, 997 (1997)Google Scholar
  16. E.R. Racec, D.E.N. Brancus, J. Phys. C 10, 3857 (1998)Google Scholar
  17. J.J. Shi, Phys. Rev. B 68, 165335 (2003)Google Scholar
  18. M.E. Mora-Ramos, F.J. Rodríguez, L. Quiroga, Phys. Stat. Sol. (b) 220, 111 (2000), Solid State Commun. 109, 767 (1999)Google Scholar
  19. M.E. Mora-Ramos, Phys. Stat. Sol. (b) 223, 843 (2001)Google Scholar
  20. Z.W. Yan, S.L. Ban, X.X. Liang, Phys. Lett. A 236, 157 (2004)Google Scholar
  21. M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Clarendon Press, Oxford, England, 1954) Google Scholar
  22. T.D. Lee, F.E. Low, D. Pines, Phys. Rev. 90, 297 (1953)Google Scholar
  23. X.X. Liang, Y.S. Zhang, Z. Phys. B 91, 455 (1993)Google Scholar
  24. I. Vurgaftman, I.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001)CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  1. 1.CCAST (World Laboratory), P.O. BOX 8730, Beijing 100080, P.R. China and College of Science, Inner Mongolia Agricultural UniversityHohhotP.R. China
  2. 2.Department of PhysicsInner Mongolia UniversityHohhotP.R. China

Personalised recommendations