Advertisement

Fermion kinetics in the Falicov-Kimball limit of the three-band Emery model

  • D. K. SunkoEmail author
Solid and Condensed State Physics

Abstract.

The three-band Emery model is reduced to a single-particle quantum model of Falicov-Kimball type, by allowing only up-spins to hop, and forbidding double occupation by projection. It is used to study the effects of geometric obstruction on mobile fermions in thermodynamic equilibrium. For low hopping overlap, there appears a plateau in the entropy, due to charge correlations, and related to real-space disorder. For large overlap, the equilibrium thermopower susceptibility remains anomalous, with a sign opposite to the one predicted from the single-particle density of states. The heat capacity and non-Fermi liquid response are discussed in the context of similar results in the literature. All results are obtained by evaluation of an effective single-particle free-energy operator in closed form. The method to obtain this operator is described in detail.

Keywords

Spectroscopy Entropy Neural Network State Physics Heat Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. von Klitzing, Rev. Mod. Phys. 58, 519 (1986) ADSGoogle Scholar
  2. N. Andrei, K. Furuya, J.H. Lowenstein, Rev. Mod. Phys. 55, 331 (1983)ADSMathSciNetGoogle Scholar
  3. P.W. Anderson, Rev. Mod. Phys. 50, 191 (1978)ADSGoogle Scholar
  4. N.F. Mott, Rev. Mod. Phys. 40, 677 (1968)ADSGoogle Scholar
  5. J. Hubbard, Proc. R. Soc. London A 276, 238 (1963)CrossRefADSGoogle Scholar
  6. M.C. Gutzwiller, Phys. Rev. 137, A1726 (1965)Google Scholar
  7. W.F. Brinkman, T.M. Rice, Phys. Rev. B 2, 4302 (1970)ADSGoogle Scholar
  8. P.W. Anderson, Science 201, 301 (1978)ADSGoogle Scholar
  9. G. Kotliar, A.E. Ruckenstein, Phys. Rev. Lett. 57, 1362 (1986)CrossRefADSMathSciNetGoogle Scholar
  10. G. Kotliar, P.A. Lee, N. Read, Physica C 153-155, 538 (1988)Google Scholar
  11. W. Metzner, D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989)CrossRefADSGoogle Scholar
  12. A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)CrossRefMathSciNetADSGoogle Scholar
  13. P.W. Anderson, Science 235, 1196 (1987)ADSGoogle Scholar
  14. L.M. Falicov, J.C. Kimball, Phys. Rev. Lett. 22, 997 (1969)CrossRefADSGoogle Scholar
  15. K. Seiler, C. Gros, T. Rice, K. Ueda, D. Vollhardt, J. Low Temp. Phys. 64, 195 (1986)ADSGoogle Scholar
  16. W. Kauzmann, Chem. Rev. 43, 219 (1948)Google Scholar
  17. R. Kubo, J. Phys. Soc. Jpn 17, 1100 (1962)zbMATHADSMathSciNetGoogle Scholar
  18. D.K. Sunko, S. Barišić, Europhys. Lett. 36, 607 (1996), Erratum: Europhys. Lett. 37, 313 (1997)ADSGoogle Scholar
  19. V.J. Emery, Phys. Rev. Lett. 58, 2794 (1987)CrossRefADSGoogle Scholar
  20. D.K. Sunko, New derivation of the cluster cumulant formula, cond-mat/0005018 Google Scholar
  21. A.J. Millis, S.N. Coppersmith, Phys. Rev. B 43, 13770 (1991)ADSGoogle Scholar
  22. D.K. Sunko, Fizika A (Zagreb) 8, 311 (2000), cond-mat/0005170 ADSGoogle Scholar
  23. Zhi He, D. Cremer, Int. J. Quantum Chem., Quantum Chemistry Symposium 25, 43 (1991)ADSGoogle Scholar
  24. S. El Shawish, J. Bonča, C.D. Batista, Phys. Rev. B 68, 195112/1 (2003) ADSGoogle Scholar
  25. M.H. Hettler, M. Mukherjee, M. Jarrell, H.R. Krishnamurthy, Phys. Rev. B 61, 12739 (2000)ADSGoogle Scholar
  26. J. Bonča, P. Prelovšek, Phys. Rev. B 67, 085103/1 (2003) ADSMathSciNetGoogle Scholar
  27. D. Duffy, A. Moreo, Phys. Rev. B 55, 12918 (1997)ADSGoogle Scholar
  28. D. Vollhardt, Phys. Rev. Lett. 78, 1307 (1997)ADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of PhysicsFaculty of ScienceZagrebCroatia

Personalised recommendations