Electrical and magnetic properties of Gd(Ba2-xLax)Cu3O7+δ

  • M. Mirzadeh
  • M. AkhavanEmail author
Solid and Condensed State Physics


We have studied the structural, electrical, and magnetic properties of the normal and superconducting states Gd(Ba2-xLax)Cu3O7+δ [Gd(BaLa)123] samples with 0.0 ≤x ≤0.8 prepared by the standard solid-state reaction. XRD characterization shows an orthorhombic-tetragonal structural transition at x=0.2. Iodometric titration analysis shows the oxygen content of the samples increase with the increase of La doping. The resistivity curves show that for x≤0.15, there is metallic behavior, and for x≥0.2, there is a gradual insulating transition behavior in the normal state. The metal-insulator and superconductor-insulator transitions occur between x=0.35 and x=0.4. The superconducting transition temperature decreases with the increase of La content as two-step curve. The normal-state resistivity is fitted for two and three dimensional variable range hopping (2D&3D-VRH) and Coulomb gap (CG) regimes, separately. The results show that the dominant mechanism is CG for x≤0.35, and VRH for x≥0.4. The pinning energy U, derived from the thermally activated flux creep (TAFC) model and Ambegaokar-Halperin (AH) theory, shows a power-law relation as U∼H -β. The critical current density decreases with the increase of La doping and magnetic field. The E-J curves show that the induced electric field increases with the increase of magnetic field and La concentration. The magnetization measurements indicate that the critical penetration fields and magnetic current density decrease with La doping.


Critical Current Density BaLa Superconducting Transition Temperature Iodometric Titration Penetration Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M. Akhavan, Physica B 321, 265 (2002)Google Scholar
  2. M. Akhavan, Phys. Stat. Sol. (b) 241, 1242 (2004)Google Scholar
  3. A. Matsuda, K. Kinoshita, T. Ishii, H. Shibata, T. Watanabe, T. Yamada, Phys. Rev. B 38, 2910 (1988)Google Scholar
  4. A.P. Goncalves, I.C. Santos, E.B. Lopes, R.T. Henriques, M. Almeida, Phys. Rev. B 37, 7476 (1988)Google Scholar
  5. L. Sederholm, G.L. Goodman, J. Solid State Chem. 81, 121 (1989)Google Scholar
  6. J. Fink, N. Nucker, H. Romberg, M. Alexander, M.B. Maple, J.J. Neumeier, J.W. Allen, Phys. Rev. B 42, 4823 (1990)Google Scholar
  7. M.E. Lopez-Morales, D. Riso-Jara, J. Taguena, R. Escudero, S. La Placa, A. Bezing, V.Y. Leem E.M. Engler, P.M. Grant, Phys. Rev. B 41, 6655 (1990)Google Scholar
  8. A. Kebede, C.S. Jee, J. Schwelger, J.E. Crow, T. Mihalisin, G.H. Myer, R.E. Salomon, P. Schottmann, M.V. Kuric, S.H. Bloom, R.P. Guertin, Phys. Rev. B 40, 4453 (1989)Google Scholar
  9. Y. Wang, A. Manthiran, J.B. Goodenough, Physica C 161, 574 (1989)Google Scholar
  10. R. Fehrenbacher, T.M. Rice, Phys. Rev Lett. 70, 3471 (1993)Google Scholar
  11. Z. Zou, J. Ye, K. Oka, Y. Nishihara, Phys. Rev. Lett. 80, 1074 (1998)Google Scholar
  12. M.R. Mohammadizadeh, M. Akhavan, Phys. Rev. B. 68, 104516 (2003)Google Scholar
  13. S. Zhu, D.K. Christen, C.E. Klabunde, J.R. Thompson, E.C. Jones, R. Feenstra, D.H. Lowndes, D.P. Norton, Phys. Rev. B 46, 5576 (1992)Google Scholar
  14. T. Matsuura, H. Itozaki, Appl. Phys. Lett. 59, 1236 (1991)Google Scholar
  15. C.C. Chin, T. Morishita, Physica C 207, 37 (1993)Google Scholar
  16. M. Ye, J. Schroeder, M. Mehbod, R. Deltour, A.G.M. Jansen, P. Wyder, Physica C 258, 95 (1996)Google Scholar
  17. J. Schroeder, M. Ye, J.F. de Marneffe, M. Mehbod, R. Deltour, A.G.M. Jansen, P. Wyder, Physica C 278, 113 (1997)Google Scholar
  18. V. Daadmehr, M. Akhavan, Phys. Stat. Sol. (a) 193, 153 (2003)Google Scholar
  19. T.T.M. Palstra, B. Batlogg, R.B. van Dover, L.F. Schneemeyer, J.V. Waszczak, Phys. Rev. B 41, 6621 (1990) Google Scholar
  20. R.H. Koch, V. Foglietti, W.J. Gallagher G. Koren, A. Gupta, M.P.A. Fisher, Phys. Rev. Lett. 63, 1511 (1989)Google Scholar
  21. J.J. Kim, H. Lee, J. Chung, H.J. Shin, H.J. Lee, J.K. Ku, Phys. Rev. B 43, 2962 (1991)Google Scholar
  22. M.A. Dubson, S.T. Herbert, J.J. Calabrese, D.C. Harris, B.R. Patton, J.C. Garland, Phys. Rev. Lett. 60, 1061 (1988) Google Scholar
  23. A.C. Wright, K. Zhang, A. Erbil, Phys. Rev. B 44, 863 (1991)Google Scholar
  24. H. Iwasaki, O. Tanigichi, S. Kenmochi, N. Kobayashi, Physica B 196, 2117 (1994)Google Scholar
  25. T.T.M. Palstra, B. Batlogg, R.B. van Dover, L.F. Schneemeyer, J.V. Waszczak, Appl. Phys. Lett. 54, 763 (1989)Google Scholar
  26. B. Batlogg, T.T.M. Palstra, L.F. Schneemeyer, J.V. Waszczak, in: Strong Correlation and Superconductivity, edited by H. Fukyama, S. Maekawa, A.P. Malozemoff, Springer Series in Solid State Science, Vol. 89 (Springer-Verlag, Berlin, 1989) Google Scholar
  27. A.P. Malozemoff, T.K. Worthington, E. Zeldov, N.C. Yeh, M.W. McElfresh, F. Holtzberg, in: Strong Correlation and Superconductivity, edited by H. Fukyama, S. Maekawa, A.P. Malozemoff, Springer Series in Solid State Science, Vol. 89 (Springer-Verlag, Berlin, 1989) Google Scholar
  28. R. Griessen, Phys. Rev. Lett. 64, 1674 (1990)Google Scholar
  29. P.L. Gammel, L.F. Schneemeyer, J.V. Waszczak, D.J. Bishop, Phys. Rev. Lett. 61, 1666 (1988)Google Scholar
  30. V. Ambegaokar, B.I. Haplerin, Phys. Rev. Lett. 22, 1364 (1969)Google Scholar
  31. M. Tinkham, C.J. Lobb, in: Solid State Physics, edited by H. Ahrenreich, D. Turnbull (Academic, New York, 1989), Vol. 42, p. 91 Google Scholar
  32. M. Tinkham, Phys. Rev. Lett. 61, 1658 (1988)Google Scholar
  33. M. Mohammadizadeh, M. Akhavan, Physica C 30, 134 (2003)Google Scholar
  34. M.R. Mohammadizadeh, M. Akhavan, Supercond. Sci. Technol. 16, 538 (2003)Google Scholar
  35. M. Mirzadeh, M. Akhavan, submitted to Supercond. Sci. Technol. (2004) Google Scholar
  36. M. Simeckova, P. Kiko, Physica C 179, 253 (1991), and refrences therein Google Scholar
  37. S. Li, E.A. Hayri, K.V. Ramanujachary, M. Greenblatt, Phys. Rev. B 38, 2450 (1988)Google Scholar
  38. J.B. Goodenough, J.M. Lango, L.B. Tabelleu, New Series, Vol. III/4a (Springer-Verlag, Berlin, 1970) Google Scholar
  39. CRD Handbook of Chemistry and Physics, 75th, edited by D.A. Lide, H.P.R. Frederikee (CRC Press, FL, 1995) Google Scholar
  40. W.H. Tang, J. Gao, Physica C 298, 66 (1998)Google Scholar
  41. R.J. Cava, Bibatbogg, R.M. Fleming, S.A. Sunshine, A. Ramire, Phys. Rev. B 37, 5912 (1988)Google Scholar
  42. M.R. Mohammadizadeh, M. Akhavan, Eur. Phys. J. B 33, 381 (2003)Google Scholar
  43. C. Quitmsnn, D. Andrich, C. Jarchow, M. Fleuster, B. Beschoten, G. Guntherodt, V.V. Moshchalkov, G. Mante, R. Manzke, Phys. Rev. B 46, 11813 (1992)Google Scholar
  44. B.I. Shklovskii, A.L. Efros, Electronic Properties of Doped Semiconductors, edited by M. Cardona, P. Fulde, H.-J. Queisser, Springer Series in Solid State Sciences, Vol. 45 (Springer-Verlag, Berlin, 1984) Google Scholar
  45. A.L. Efros, B.I. Shklovskii, J. Phys. C 8, L49 (1975)Google Scholar
  46. N.F. Mott, E.A. Davis, Electronic Processes in Non-crystalline Materials, 2nd edn. (Clarendon, Oxford, 1979) Google Scholar
  47. Z. Yamani, M. Akhavan, Solid State Commun. 107, 197 (1998)Google Scholar
  48. W.H. Tang, J. Gao, Physica C 315, 66 (1999)Google Scholar
  49. M. Mokhtari, H. Khosroabadi, M. Akhavan, Phys. Stat. Sol. (c) 1, 1891 (2004)Google Scholar
  50. R.J. Cava, A.W. Hewat, E.A. Hewat, B. Batlogg, M. Marezio, K.M. Rabe, J.J. Krajawski, W.F. Peck, Jr., L.W. Rupp, Jr., Physica C 165, 419 (1990)Google Scholar
  51. H.S. Gamchi, G.J. Russell, K.N.R. Taylor, Phys. Rev. B 50, 12950 (1994)Google Scholar
  52. D.H. Kim, K.E. Gray, R.T. Kampwirth, D.M. McKay, Phys. Rev. B 42, 6249 (1990)Google Scholar
  53. C. Gaffney, H. Petersen, R. Bednar, Phys. Rev. B 48, 3388 (1993)Google Scholar
  54. H. Shakeripour, M. Akhavan, Supercond. Sci. Technol. 14, 234 (2001)Google Scholar
  55. W. Chen, J.P. Franck, J. Jung, Physica C 341-348, 1195 (2000)Google Scholar
  56. M. Kariminezhad, H. Khosroabadi, M. Akhavan, Phys. Stat. Sol. (c) 1, 1855 (2004)Google Scholar
  57. P. Maleki, H. Khosroabadi, M. Akhavan, Phys. Stat. Sol. (c) 1, 1871 (2004)Google Scholar
  58. B.W. Kang, W.N. Kang, S.H. Yum, J.Z. Wu, Phys. Rev. B 56, 7862 (1997)Google Scholar
  59. M. Mirzadeh, H. Khosroabadi, M. Akhavan, Phys. Stat. Sol. (c) 1, 1875 (2004)Google Scholar
  60. M. Tinkham, Introduction to Superconductivity (McGraw-Hill Press, New York, 1975) Google Scholar
  61. Y. Yeshurum, A.P, Malozamoff, Phys. Rev. Lett. 60, 2201 (1988)Google Scholar
  62. H.E. Horng, H.H. Sung, B.C. Yao, H.C. Yang, Physica C 185-189, 2221 (1991)Google Scholar
  63. G. Deutscher, K.A. Muller, Phys. Rev. Lett. 59, 1745 (1987)Google Scholar
  64. R. Gross, P. Chaudhari, D. Dimos, A. Gupta, G. Koren, Phys. Rev. Lett. 64, 228 (1990) Google Scholar
  65. D.H. Kim, K.E. Gray, R.T. Kampwirth, K.C. Woo, D.M. McKay, J. Stein, Phys. Rev. B 41, 11642 (1990)Google Scholar
  66. Z.H. Wang, X.W. Cao, Solid State Commun. 109, 709 (1999)Google Scholar
  67. L.M. Paulius, C.C. Almasan, M.B. Maple, Phys. Rev. B 47, 11627 (1993)Google Scholar
  68. Z.H. Wang, S.Y. Ding, Physica C 341-348, 1247 (2000)Google Scholar
  69. H. Khosroabadi, V. Daadmehr, M. Akhavan, Physica C 384, 169 (2003)Google Scholar
  70. P.W. Anderson, Phys. Rev. Lett. 9, 309 (1962)Google Scholar
  71. J.D. Hettinger, A.G. Swanson, W.J. Skocpol, J.S. Brooks, J.M. Graybeal, P.M. Mankiewich, R.E. Howard, B.L. Straughn, E.G. Burkhardt, Phys. Rev. Lett. 62, 2044 (1989)Google Scholar
  72. E. Zeldov. N.M. Amer, G. Koren, A. Gupta, R.J. Gambino, M.W. Mc Elfresh, Phys. Rev. Lett. 62, 3093 (1989)Google Scholar
  73. C.P. Bean, Rev. Mod. Phys. 36, 31 (1964)Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of Physics, Sharif University of TechnologyMagnet Research Laboratory (MRL)TehranIran

Personalised recommendations