Advertisement

The effect of iron doping in La0.8Sr0.2Fe0.05Co0.95O3-δ perovskite

  • Z. NémethEmail author
  • Z. Klencsár
  • E. Kuzmann
  • Z. Homonnay
  • A. Vértes
  • J. M. Grenèche
  • B. Lackner
  • K. Kellner
  • G. Gritzner
  • J. Hakl
  • K. Vad
  • S. Mészáros
  • L. Kerekes
Solid and Condensed State Physics

Abstract.

La0.8Sr0.257Fe0.05Co0.95O3-δ perovskite is investigated by 57Fe transmission and emission Mössbauer spectroscopy, X-ray diffraction, AC magnetic susceptibility and magnetotransport measurements. Temperature dependence of the 57Fe Mössbauer isomer shift, quadrupole splitting, magnetic hyperfine field, line broadening, and relative spectral area is presented in a detailed manner for La0.8Sr0.257Fe0.05Co0.95O3-δ . The oxidation state of iron is determined to be Fe3+, and the presence of preferential electronic charge compensation Fe3+ ↦  Fe4+ over that of Co3+ ↦ Co4+ is excluded. Relaxation of iron magnetic moments reflected by the 57Fe Mössbauer spectra of La0.8Sr0.257Fe0.05Co0.95O3-δ are interpreted as evidence for the existence of superparamagnetic like Co clusters and a corresponding cluster glass magnetic phase formed below T ≈65 K.

Keywords

Perovskite Magnetic Susceptibility Electronic Charge Isomer Shift Magnetic Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Fontcuberta, Physics World, Feb. 1999 Google Scholar
  2. K.-I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, Y. Tokura, Nature 395, 677 (1998)Google Scholar
  3. A.P. Ramirez, R.J. Cava, J. Krajewski, Nature 386, 156 (1997)Google Scholar
  4. A. Barman, M. Ghosh, S. Biswas, S.K. De, S. Chatterjee, Appl. Phys. Lett. 71, 3150 (1997)Google Scholar
  5. C. Zener, Phys. Rev. 82, 403 (1951)CrossRefGoogle Scholar
  6. Q. Li, J. Zang, A.R. Bishop, C.M. Soukoulis, Phys. Rev. B 56, 4541 (1997)Google Scholar
  7. A.J. Millis, Nature 392, 147 (1998)Google Scholar
  8. V. Golovanov, L. Mihály, A.R. Moodenbaugh, Phys. Rev. B 53, 8207 (1996)Google Scholar
  9. R. Mahendiran, A.K. Raychaudhuri, Phys. Rev. B 54 (22), 16044 (1996) Google Scholar
  10. S. Yamaguchi, H. Taniguchi, H. Takagi, T. Arima, Y. Tokura, J. Phys. Soc. Jpn 64, 1885 (1995)Google Scholar
  11. J. Wu, C. Leighton, Phys. Rev. B 67, 174408 (2003)Google Scholar
  12. A. Mineshige, M. Inaba, T. Yao, Z. Ogumi, J. Solid State Chem. 121, 423 (1996)Google Scholar
  13. A. Maignan, C. Martin, M. Hervieu, B. Raveau, Eur. Phys. J. B 13, 41 (2000)Google Scholar
  14. A.S. Ioselevich. Phys. Rev. Lett. 71, 1067 (1993) Google Scholar
  15. Á. Cziráki, I. Geröcs, M. Köteles, A. Gábris, L. Pogány, I. Bakonyi, Z. Klencsár, A. Vértes, S.K. De, A. Barman, M. Ghosh, S. Biswas, S. Chatterjee, B. Arnold, H.D. Bauer, K. Wetzig, C. Ulhaq-Bouillet, V. Pierron-Bohnes, Eur. Phys. J. B 21, 521 (2001)Google Scholar
  16. L.-W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, S.R. Sehlin, Solid State Ionics 76, 259 (1995)Google Scholar
  17. Z. Klencsár, E. Kuzmann, A. Vértes, J. Radioanal. Nucl. Chem. 210, 105 (1996)Google Scholar
  18. R.H. Herber, Chemical Mössbauer Spectroscopy (Plenum Press, New York, 1984) Google Scholar
  19. R. Caciuffo, J. Mira, J. Rivas, M.A. Senaris-Rodriguez, P.G. Radaelli, F. Carshugi, D. Fiorani, J.B. Goodenough, Europhys. Lett. 45(3), 399 (1999) Google Scholar
  20. R. Caciuffo, D. Rinaldi, G. Barucca, J. Mira, J. Rivas, M.A. Senaris-Rodriguez, P.G. Radaelli, D. Fiorani, J.B. Goodenough, Phys. Rev. B 59(2), 1068 (1999) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  • Z. Németh
    • 1
    Email author
  • Z. Klencsár
    • 2
  • E. Kuzmann
    • 2
  • Z. Homonnay
    • 1
  • A. Vértes
    • 1
    • 2
  • J. M. Grenèche
    • 3
  • B. Lackner
    • 4
  • K. Kellner
    • 4
  • G. Gritzner
    • 4
  • J. Hakl
    • 5
  • K. Vad
    • 5
  • S. Mészáros
    • 5
  • L. Kerekes
    • 5
  1. 1.Department of Nuclear ChemistryEötvös Loránd UniversityBudapestHungary
  2. 2.Research Group for Nuclear Methods in Structural Chemistry, Hungarian Academy of SciencesBudapestHungary
  3. 3.Laboratoire de Physique de l’État Condensé, UMR CNRS 6087, Université du MaineLe Mans Cedex 9France
  4. 4.Institute for Chemical Technology of Inorganic Materials, Johannes Kepler UniversityLinzAustria
  5. 5.Institute of Nuclear Research of the Hungarian Academy of SciencesDebrecenHungary

Personalised recommendations