Nonuniform and sequential magnetization reversal via domain structure formation for multilayered system with grain size induced enhanced exchange bias

  • A. Paul
  • E. Kentzinger
  • U. Rücker
  • D. E. Bürgler
  • P. Grünberg
Dynamics and magnetization reversal


We report on the magnetization reversal in series of exchange-biased multilayers NiFe(10.0 nm)/[ Ir20Mn80(6.0 nm)/Co80Fe20(3.0 nm)] N studied by specular reflection and off-specular scattering of polarized neutrons. All specimens are sputtered and post-annealed at 530 K (i.e. above the IrMn Néel temperature of 520 K) in Ar atmosphere before cooling to room temperature in the presence of a field of 130 Oe which induces the unidirectional anisotropy. We find HEB is dependent upon the number of bilayers N as it gradually increases from 0.33 kOe for N=1 to a considerably higher value of upto ≈0.9 kOe for N=10. X-ray specular and diffuse scattering data reveal no significant variation of the lateral correlation length and only a weak dependence of the vertical rms interface roughness on N. Atomic and magnetic force microscopy, however, show a strong reduction of the grain size accompanied by distinct changes of the ferromagnetic domain structure. The enhancement of the exchange bias effect is presumably related to the shrinking of the related domain size in the antiferromagnet due to the structural evolution in the multilayers. Polarized neutron reflectometry (PNR) measurements are done at different applied fields sweeping both branches of the hysteresis loop. The spin-flip (SF) cross section of both the N=10 and 3 samples show diffusely scattered intensity appears gradually as the field approaches HEB and is most intense where the net magnetization vanishes. The disappearance of diffuse scattering in saturation indicates that the off-specular intensity is related to the reversal process. The reversal proceeds sequentially starting with the bottom (top) CoFe layer for decreasing (increasing) field and is related to the evolution of the grain size along the stack. The reversal of each CoFe layer is for both field branches due to domain wall motion. Thus as a main result, we observe a sequential and symmetric magnetization reversal in exchange-biased multilayers. The concomitant in-plane magnetization fluctuations revealed by off-specular spin-flip scattering indicate a more complex reversal mechanism than hitherto considered. Moreover, although the grain size decreases from N=3 to 10 by a factor of about four the reversal mechanism remains similar.


Magnetization Reversal Exchange Bias Domain Wall Motion Magnetic Force Microscopy Reversal Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. We assume a positive direction of HFC and call the field sweep from positive to negative (negative to positive) saturation the decreasing (increasing) loop branch Google Scholar
  2. W.H. Meiklejohn, C.P. Bean, Phys. Rev. 102, 1413 (1956) CrossRefGoogle Scholar
  3. B. Dieny, J. Magn. Magn. Mater. 136, 335 (1994) Google Scholar
  4. J. Nogués, I.K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999); A.E. Berkowitz, K. Takano, J. Magn. Magn. Mater. 200, 552 (1999) Google Scholar
  5. V.I. Nikitenko et al., Phys. Rev. Lett. 84, 765 (2000) CrossRefPubMedGoogle Scholar
  6. W.-T. Lee et al., Phys. Rev. B 65, 224417 (2002) CrossRefGoogle Scholar
  7. M.R. Fitzsimmons et al., Phys. Rev. Lett. 84, 3986 (2000) CrossRefPubMedGoogle Scholar
  8. M. Gierlings et al., Phys. Rev. B 65, 92407 (2002) CrossRefGoogle Scholar
  9. F. Radu et al., Phys. Rev. B 67, 134409 (2003) CrossRefGoogle Scholar
  10. B.C. Choi et al., Appl. Phys. Lett. 77, 892 (2000) CrossRefGoogle Scholar
  11. B. Beckmann, U. Nowak, K.D. Usadel, Phys. Rev. Lett. 91, 187201 (2003) CrossRefPubMedGoogle Scholar
  12. A. Paul, G.S. Lodha, Phys. Rev. B 65, 245416 (2002) CrossRefGoogle Scholar
  13. S.K. Sinha et al., Phys. Rev. B 38, 2297 (1998) Google Scholar
  14. T. Salditt, T.H. Metzger, J. Peisl, Phys. Rev. Lett. 73, 2228 (1994) CrossRefPubMedGoogle Scholar
  15. U. Rücker et al., Physica B 276-278, 95 (2000); U. Rücker et al., Physica B 297, 140 (2001); for information on HADAS see: Google Scholar
  16. J.A.C. Bland, J. Vac. Sci. Technol. A 15, 1759 (1997) CrossRefGoogle Scholar
  17. C.H. Marrows, S. Langridge, B.J. Hickey, Phys. Rev. B 62, 11340 (2000) CrossRefGoogle Scholar
  18. V. Lauter-Pasyuk et al., Phys. Rev. Lett. 89, 167203 (2002) CrossRefPubMedGoogle Scholar
  19. L.G. Paratt, Phys. Rev. 95, 359 (1954) CrossRefGoogle Scholar
  20. L. Nevot, P. Croce, Rev. Phys. Appl. 15, 761 (1980) Google Scholar
  21. A. Paul et al., J. Phys.: Condens. Matter 15, 2471 (2003) CrossRefGoogle Scholar
  22. V. Holý, T. Baumbach, Phys. Rev. B 49, 10668 (1994) CrossRefGoogle Scholar
  23. A.P. Malozemoff, Phys. Rev. B 35, 3679 (1987) CrossRefGoogle Scholar
  24. C. Liu et al., J. Appl. Phys. 87, 6644 (2000) CrossRefGoogle Scholar
  25. H. Ohldag et al., Phys. Rev. Lett. 91, 017203 (2003) CrossRefPubMedGoogle Scholar
  26. P. Miltényi et al., Phys. Rev. Lett. 84, 4224 (2000) CrossRefPubMedGoogle Scholar
  27. U. Nowak, K.D. Usadel, J. Keller, P. Miltényi, B. Beschoten, G. Güntherodt, Phys. Rev. B 66, 14430 (2002) Google Scholar
  28. J. Keller, P. Miltényi, B. Beschoten, G. Güntherodt, U. Nowak, K.D. Usadel, Phys. Rev. B 66, 14431 (2002) Google Scholar
  29. F. Nolting, A. Scholl, J. Stöhr, J.W. Seo, J. Fompeyrine, H. Siegwart, J.-P. Locquet, S. Anders, J. Lüning, E.E. Fullerton, M.F. Toney, M.R. Scheinfein, H.A. Padmore, Nature 405, 767 (2000) CrossRefPubMedGoogle Scholar
  30. B.P. Toperverg, “Polarized Neutron Reflection and Off-Specular Scattering” in Polarized Neutron Scattering, edited by Th. Brückel, W. Schweika, Forschungszentrum Jülich, Series “Matter and Materials”, Vol. 12 (2002) Google Scholar
  31. C.H. Marrows et al., Phys. Rev. B 66, 24437 (2002) Google Scholar
  32. E. Kentzinger, U. Rücker, B.P. Toperverg, Physica B 335, 82 (2003) Google Scholar
  33. M.R. Fitzsimmons et al., J. Magn. Mag. Mater. 271, 103 (2004) Google Scholar
  34. J.J. Mor, The Levenberg-Marquardt Algorithm: Implementation and Theory, in Numerical Analysis, edited by G.A. Watson, Lecture Notes in Mathematics, Vol. 630 (Springer-Verlag, Berlin, 1977), pp. 105–116 Google Scholar
  35. H. Zabel, Appl. Phys. A 58, 259 (1994); E. Kentzinger, U. Rücker, B.P. Toperverg, Physica B 335, 82 (2003) Google Scholar
  36. A. Paul et al. (to be published) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  • A. Paul
    • 1
  • E. Kentzinger
    • 1
  • U. Rücker
    • 1
  • D. E. Bürgler
    • 1
  • P. Grünberg
    • 1
  1. 1.Institut für FestkörperforschungJülichGermany

Personalised recommendations