HSSH-model of Hole transfer in DNA

Statistical Physics and Biological Information

Abstract.

A method based on a selfconsistent solution of a quantum-mechanical system with temperature fluctuations described by Langevin equations is developed to calculate the charge carrier mobility in DNA. To model the charge transfer in DNA, a combined Holstein – SSH Hamiltonian is considered. As an example the hole mobility is calculated at room temperature for synthetic poly (G)/poly (C) duplex with regard to main structural fluctuations.

Keywords

Spectroscopy Neural Network State Physics Charge Transfer Complex System 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.J. Murphy, M.R. Arkin, Y. Jenkins, N.D. Ghatlia, S. Bossman, N.J. Turro, J.K. Barton, Science 262, 1025 (1993) ADSGoogle Scholar
  2. S.O. Kelley, J.K. Barton, Science 283, 375 (1999)ADSGoogle Scholar
  3. A. Harriman, Angew. Chem. 111, 996 (1999)Google Scholar
  4. F.P. Lewis, Y. Zhang, X. Liu, N. Xu, R.I. Lestinger, J. Phys. Chem. B 103, 2570 (1999)Google Scholar
  5. E. Meggers, M.E. Michel-Beyerle, B.J. Giese, J. Am. Chem. Soc. 120, 12950 (1998)Google Scholar
  6. F.D. Lewis, Y. Wu, J. Photochemistry and Photobiology 2, 1 (2001)Google Scholar
  7. G.B. Schuster, Acc. Chem. Res. 33, 253 (2000)Google Scholar
  8. H.W. Fink, C. Schönenberger, Nature 398, 407 (1999)ADSGoogle Scholar
  9. D. Porath, A. Bezryadin, S. de Vries, C. Dekker, Nature 403, 635 (2000)ADSGoogle Scholar
  10. C. Dekker, M.A. Ratner, Phys. World 14, 29 (2001)Google Scholar
  11. V.D. Lakhno, N.S. Fialko, JETP Lett. 78, 336 (2003)ADSGoogle Scholar
  12. F.C. Grozema, L.D.A. Siebbeles, Y.A. Berlin, M.A. Ratner, CHEMPHYSCHEM 6, 536 (2002)Google Scholar
  13. V.D. Lakhno, in Metal-Ligand Interactions, edited by N. Russo et al. (Kluver Academic Publishers, 2003), p. 571 Google Scholar
  14. E.M. Conwell, S.V. Rakhmanova, PNAS 57, 4556 (2000)ADSGoogle Scholar
  15. D.M. Basko, E.M. Conwell, Phys. Rev. E 65, 061902-1 (2002)ADSGoogle Scholar
  16. F.C. Grozema, Y.A. Berlin, L.D.A. Siebbeles, J. Am. Chem. Soc. 122, 10903 (2000)Google Scholar
  17. F.C. Grozema, Y.A. Berlin, L.D.A. Siebbeles, Int. J. Quant. Chem. 75, 1009 (1999)Google Scholar
  18. T. Holstein, Ann. Phys. 8, 325 (1959)MATHADSGoogle Scholar
  19. N.S. Fialko, V.D. Lakhno, Phys. Lett. A 278, 108 (2000)ADSGoogle Scholar
  20. N.S. Fialko, V.D. Lakhno, Regular & Chaotic Dynamics 7 (3), 299 (2002) MathSciNetGoogle Scholar
  21. W.P. Su, J.R. Schrieffer, A.J. Heeger, Phys. Rev. Lett. 42, 1698 (1979)CrossRefADSGoogle Scholar
  22. A.A. Voityuk, N. Rösch, M. Bixon, J. Jortner, J. Phys. Chem. 104, 9740 (2000)Google Scholar
  23. A. Troisi, G. Orlandi, Chem. Phys. Lett. 344, 509 (2001)ADSGoogle Scholar
  24. V. Lisy, P. Miskovsky, P. Schreiber, J. Biomol. Struct. Dyn. 13, 707 (1996)Google Scholar
  25. H. Urabe, Y. Sugawara, M. Ataka, A. Rupprecht, Biophys. J. 74, 1533 (1998)CrossRefGoogle Scholar
  26. J.A. McCommon, S.C. Harvery, Dynamics of Proteins and Nucleic Acids (Cambridge University Press, Cambridge, 1987) Google Scholar
  27. H.S. Greenside, E. Helfand, The Bell System Tech. J. 60, 1927 (1981)MATHGoogle Scholar
  28. J. Dyre, T.D. Schroder, Rev. Mod. Phys. 72, 873 (2000)ADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  1. 1.Institute of Mathematical Problems of Biology, Russian Academy of SciencesMoscow RegionRussian Federation

Personalised recommendations