Advertisement

Magnetic structure of the spin-1/2 layer compound NaNiO2

  • C. Darie
  • P. Bordet
  • S. de Brion
  • M. Holzapfel
  • O. Isnard
  • A. Lecchi
  • J. E. Lorenzo
  • E. Suard
Rapid Note

Abstract.

We have carried out high resolution neutron powder diffraction experiments aiming at a determination of the magnetic structure of the S=1/2 layer compound NaNiO2. The magnetic moments are ferromagnetically aligned in the NiO2 layers and antiparallel between layers. The direction of the magnetic moment has a small component along the a-direction.

Keywords

Spectroscopy Neural Network State Physics High Resolution Complex System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Pauling, Proc. Natl. Acad. Sci. 39, 551 (1953)Google Scholar
  2. P.W. Anderson, Science 235, 1196 (1987); S.A. Kivelson, D.S. Rokhsar, J.P. Sethna, Phys. Rev. B 35, 8865 (1987); G. Baskaran, P.W. Anderson, Phys. Rev. B 37, 580 (1988)Google Scholar
  3. D.S. Rokhsar, S.A. Kivelson, Phys. Rev. Lett. 61, 2376 (1988); S. Sachdev, Phys. Rev. B 40, 5204 (1989)Google Scholar
  4. R. Moessner, S.L. Sondhi, Phys. Rev. Lett. 86, 1881 (2001)Google Scholar
  5. The actual high temperature structure is rhombohedral and the electron decomposition amongst orbitals is e4a2e1 Google Scholar
  6. E. Chappel, M.D. Núñez-Regueiro, F. Dupont, G. Chouteau, C. Darie, A. Sulpice, Eur. Phys. J. B 17, 609 (2000)Google Scholar
  7. M.D. Núñez-Regueiro, E. Chappel, G. Chouteau, C. Delmas, Eur. Phys. J. B 16, 37 (2000)Google Scholar
  8. E. Chappel, M.D. Núñez-Regueiro, G. Chouteau, O. Isnard, C. Darie, Eur. Phys. J. B 17, 615 (2000)Google Scholar
  9. M.V. Mostovoy, D.I. Khomskii, Phys. Rev. Lett. 89, 227203 (2002) Google Scholar
  10. F. Vernay, K. Penc, P. Fazekas, F. Mila, Phys. Rev. B 70, 014428 (2004)Google Scholar
  11. M. Holzapfel, S. de Brion, C. Darie, P. Bordet, G. Chouteau, P. Strobel, A. Sulpice, M.D. Núñez-Regueiro, Phys. Rev. B 70, 132410 (2004)Google Scholar
  12. P.F. Bongers, U. Enz, Solid State Comm. 4, 153 (1966)Google Scholar
  13. M. Holzapfel, C. Darie, P. Bordet, E. Chappel, M.D. Nunez Regueiro, S. Diaz, S. de Brion, G. Chouteau, P. Strobel, to be published in Solid State Science Google Scholar
  14. E. Suard, A. Hewat, Neutron News 12, 30 (2001)Google Scholar
  15. O. Isnard, G. Chouteau, private communication Google Scholar
  16. J. Rodríguez-Carvajal, Physica B 55, 65 (1993)Google Scholar
  17. L.P. McCusker, R.B. Van Dreele, D.E. Cox, D. Louër, P. Scardi, J. Appl. Cryst. 32, 36 (1999)Google Scholar
  18. S. Tornow, O. Entin-Wohlman, A. Aharony, Phys. Rev. B 60, 10206 (1999), and references therein; V.Yu Yushankhai, R. Hayn, Europhys. Lett. 47, 116 (1999)Google Scholar
  19. S. de Brion, private communication Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  • C. Darie
    • 1
  • P. Bordet
    • 1
  • S. de Brion
    • 2
  • M. Holzapfel
    • 1
    • 3
  • O. Isnard
    • 1
  • A. Lecchi
    • 1
  • J. E. Lorenzo
    • 1
  • E. Suard
    • 4
  1. 1.Laboratoire de Cristallographie, CNRSGrenoble Cedex 09France
  2. 2.Laboratoire de Champs Magnétiques Intenses, CNRSGrenoble Cedex 09France
  3. 3.Paul-Scherrer-InstitutVilligen PSISwitzerland
  4. 4.Institut Laue-LangevinGrenobleFrance

Personalised recommendations