Flux dynamics, superconducting, and normal state properties of Gd(Ba \(\mathsf{_{2-x}}\)Pr\(\mathsf{_{x}}\))Cu\(\mathsf{_{3}}\)O \(\mathsf{_{7 + \delta}}\)

  • M. R. Mohammadizadeh
  • M. Akhavan


Gd(Ba2-x Pr x )Cu3O\(_{7 + \delta}\) single phase polycrystalline samples with \(0.0\le x\le 1.0\) were investigated for structural, electronic and flux dynamics properties. Two-dimensional variable range hopping (VRH) is the dominant conduction mechanism in the normal state of the system. Pr doping strongly localizes the carriers in normal state, and finally causes the suppression of superconductivity. The effect of Pr substitution in 123 structure of HTSC at R or Ba sites is to increase the pseudogap temperature \(T_{\rm s}\), although, Pr at Ba sites has a stronger effect on the increase of \(T_{\rm s}\) and suppression of superconductivity. The magnetoresistance of the samples have been studied within thermally activated flux creep and the Ambegaokar and Halperin phase slip models. The derived critical current density, H c2(T), H c2 (0), and superconducting coherence length \(\xi \) show that the Pr doping, like weak links, decreases the vortex flux pinning energy. Our results imply that understanding the real suppression mechanism of superconductivity by Pr doping in HTSC is connected crucially to the exact position of Pr in the structure.


Vortex Critical Current Density Slip Model Phase Slip Flux Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Z. Yamani, M. Akhavan, Phys. Rev. B 56, 7894 (1997)Google Scholar
  2. 2.
    L. Soderholm, K. Zhang, D.G. Hinks, M.A. Beno, J.D. Jorgensen, C.U. Segre, I.K. Schuller, Nature 328, 604 (1987)Google Scholar
  3. 3.
    H. Shakeripour, M. Akhavan, Supercond. Sci. Technol. 14, 213 (2001)Google Scholar
  4. 4.
    H.A. Blackstead, J.D. Dow, Phys. Rev. B 51, 11830 (1995)Google Scholar
  5. 5.
    Z. Zou, J. Ye, K. Oka, Y. Nishihara, Phys. Rev. Lett. 80, 1074 (1998)Google Scholar
  6. 6.
    M. Luszczek, W. Sadowski, T. Klimczuk, J. Olchowik, B. Susla, R. Czajka, Physica C 322, 57 (1999)Google Scholar
  7. 7.
    F.M. Araujo-Moreira, P.N. Lisboa-Filho, S.M. Zanetti, E.R. Leite, W.A. Ortiz, Physica B 284-288, 1033 (2000)Google Scholar
  8. 8.
    T. Usagawa, Y. Ishimaru, J. Wen, T. Utagawa, S. Koyama, Y. Enomoto, Appl. Phys. Lett. 72, 1772 (1998)Google Scholar
  9. 9.
    M. Akhavan, Physica B 321, 265 (2002)Google Scholar
  10. 10.
    M. Akhavan, Phys. Stat. Sol. (b) 241, 1242 (2004)Google Scholar
  11. 11.
    J.J. Neumeier, T. Bjornholm, M.B. Maple, I.K. Schuller, Phys. Rev. Lett. 63, 2516 (1989)Google Scholar
  12. 12.
    G.Y. Guo, W.M. Temmerman, Phys. Rev. B 41, 6372 (1990)Google Scholar
  13. 13.
    R. Fehrenbacher, T.M. Rice, Phys. Rev. Lett. 70, 3471 (1993)Google Scholar
  14. 14.
    H.A. Blackstead, D.B. Chrisey, J.D. Dow, J.S. Horwitz, A.E. Klunzinger, D.B. Pulling, Phys. Lett. A 207, 109 (1995)Google Scholar
  15. 15.
    M.J. Kramer, K.W. Dennis, D. Falzgraf, R.W. McCallum, S.K. Malik, W.B. Yelon, Phys. Rev. B 56, 5512 (1997)Google Scholar
  16. 16.
    M.R. Mohammadizadeh, H. Khosroabadi, M. Akhavan, Physica B 321, 301 (2002)Google Scholar
  17. 17.
    I.D. Brown, D. Altermatt, Acta Cryst. B 41, 244 (1985); I.D. Brown, J. Solid State Chem. 82, 122 (1989)Google Scholar
  18. 18.
    M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998)Google Scholar
  19. 19.
    S. Kleefisch, B. Welter, A. Marx, L. Alff, R. Gross, M. Naito, Phys. Rev. B 63, 100507 (2001)Google Scholar
  20. 20.
    M.R. Mohammadizadeh, M. Akhavan, Phys. Rev. B 68, 104516 (2003)Google Scholar
  21. 21.
    C. Quitmann, D. Andrich, C. Jarchow, M. Fleuster, B. Beschoten, G. Guntherodt, V.V. Moshchalkov, G. Mante, R. Manzke, Phys. Rev. B 46, 11813 (1992)Google Scholar
  22. 22.
    M. Covington, L.H. Greene, Phys. Rev. B 62, 12440 (2000)Google Scholar
  23. 23.
    Y. Takano, S. Takayanagi, S. Ogawa, T. Yamadaya, N. Mori, Solid State Commun. 103, 215 (1997)Google Scholar
  24. 24.
    W. Jiang, J.L. Peng, J.J. Hamilton, R.L. Greene, Phys. Rev. B 49, 690 (1994)Google Scholar
  25. 25.
    M.W. Coffey, J.R. Clem, Phys. Rev. Lett. 67, 368 (1991); M.W. Coffey, J.R. Clem, Phys. Rev. B 46, 11757 (1992)Google Scholar
  26. 26.
    H.L. Liu, A. Zibold, D.B. Tanner, Y.J. Wang, M.J. Burns, K.A. Delin, M.Y. Li, M.K. Wu, Solid State Commun. 109, 7 (1999)Google Scholar
  27. 27.
    Z. Yamani, M. Akhavan, Supercond. Sci. Technol. 10, 427 (1997)Google Scholar
  28. 28.
    D.B. Wiles, R.A. Young, J. Appl. Cryst. 14, 149 (1981)Google Scholar
  29. 29.
    R.A. Young, in: The Rietveld Method, edited by R.A. Young (Oxford University Press, New York, 1993), p. 1Google Scholar
  30. 30.
    Ch. Bertrand, Ph. Galez, R.E. Gladyshevskii, J.L. Jorda, Physica C 321, 151 (1999)Google Scholar
  31. 31.
    M. Izumi, T. Yabe, T. Wada, A. Maeda, K. Uchinokura, S. Tanaka, H. Asano, Phys. Rev. B 40, 6771 (1989)Google Scholar
  32. 32.
    K. Koyama, T. Tange, T. Saito, K. Mizuno, Physica B 281&282, 909 (2000)Google Scholar
  33. 33.
    Z. Klencsar, E. Kuzmann, Z. Homonnay, A. Vertes, K. Vad, J. Bankuti, T. Racz, M. Bodogh, I. Kotsis, Physica C 304, 124 (1998)Google Scholar
  34. 34.
    D. Wagener, M. Buchgeister, W. Hiller, S.M. Hosseini, K. Kopitzki, Supercond. Sci. Technol. 4, S211 (1991)Google Scholar
  35. 35.
    L. Colonescu, F. Cairon, J. Berthon, I. Zelenay, R. Suryanarayanan, Physica B 259-261, 528 (1999)Google Scholar
  36. 36.
    V.N. Narozhnyi, D. Eckert, K.A. Nenkov, G. Fuchs, K.-H. Muller, T.G. Uvarova, cond-mat/9909107Google Scholar
  37. 37.
    Z. Zou, Y. Nishihara, Phys. Rev. Lett. 82, 462 (1999)Google Scholar
  38. 38.
    M. Akhavan, Physica C 250, 25 (1995)Google Scholar
  39. 39.
    Z. Yamani, M. Akhavan, Physica C 268, 78 (1996)Google Scholar
  40. 40.
    J.D. Jorgensen, B.W. Veal, A.P. Paulikas, L.J. Nowicki, G.W. Crabtree, H. Claus, W.K. Kwok, Phys. Rev. B 41, 1863 (1990)Google Scholar
  41. 41.
    M.R. Mohammadizadeh, M. Akhavan, Eur. Phys. J. B 33, 381 (2003)Google Scholar
  42. 42.
    H. Khosroabadi, M. Modarreszadeh, P. Taheri, M. Akhavan, Phys. Stat. Sol. (c) 1, 1867 (2004)Google Scholar
  43. 43.
    N.F. Mott, E.A. Davis, Electronic Processes in Non-crystalline Materials, 2nd edn. (Clarendon, Oxford, 1979); B.I. Shklovskii, A.L. Efros, Electronic Properties of Doped Semiconductors, edited by M. Cardona, P. Fulde, H.-J. Queisser (Springer-Verlag, Berlin, 1984)Google Scholar
  44. 44.
    P.B. Littlewood, C.M. Varma, Phys. Rev. B 45, 12636 (1992)Google Scholar
  45. 45.
    W.-H. Jung, Physica B 304, 75 (2001)Google Scholar
  46. 46.
    U. Kabasawa, Y. Tarutani, M. Okamoto, T. Fukazawa, A. Tsukamoto, M. Hiratani, K. Takagi, Phys. Rev. Lett. 70, 1700 (1993)Google Scholar
  47. 47.
    S.J. Liu, W. Guan, Phys. Rev. B 58, 11716 (1998)Google Scholar
  48. 48.
    Z. Yamani, M. Akhavan, Solid State Commun. 107, 197 (1998)Google Scholar
  49. 49.
    H. Khosroabadi, V. Daadmehr, M. Akhavan, Mod. Phys. Lett. B 16, 943 (2002)Google Scholar
  50. 50.
    M.R. Mohammadizadeh, M. Akhavan, Physica B 336, 410 (2003)Google Scholar
  51. 51.
    W.H. Tang, J. Gao, J. Phys.: Condens. Matter 11, 8555 (1999)Google Scholar
  52. 52.
    M.R. Mohammadizadeh, M. Akhavan, Supercond. Sci. Technol. 16, 1216 (2003)Google Scholar
  53. 53.
    M.R. Mohammadizadeh, M. Akhavan, Supercond. Sci. Technol. 16, 538 (2003)Google Scholar
  54. 54.
    V. Ambegaokar, B.I. Halperin, Phys. Rev. Lett. 22, 1364 (1969)Google Scholar
  55. 55.
    J.J. Kim, H.K. Lee, J. Chung, H.J. Shin, H.J. Lee, J.K. Ku, Phys. Rev. B 43, 2962 (1991)Google Scholar
  56. 56.
    R.H. Koch, V. Foglietti, W.J. Gallagher, G. Koren, A. Gupta, M.P.A. Fisher, Phys. Rev. Lett. 63, 1511 (1989)Google Scholar
  57. 57.
    Z.H. Wang, S.Y. Ding, Physica C 341-348, 1247 (2000)Google Scholar
  58. 58.
    T.T.M. Palstra, B. Batlogg, R.B. van Dover, L.F. Schneemeyer, J.V. Waszczak, Phys. Rev. B 41, 6621 (1990)Google Scholar
  59. 59.
    H. Khosroabadi, V. Daadmehr, M. Akhavan, Iran. J. Phys. Res. 3, 153 (2002)Google Scholar
  60. 60.
    V. Daadmehr, M. Akhavan, Phys. Stat. Sol. (a) 193, 153 (2002)Google Scholar
  61. 61.
    L.M. Paulius, C.C. Almasan, M.B. Maple, Phys. Rev. B 47, 11627 (1993)Google Scholar
  62. 62.
    Y.G. Xiao, B. Yin, J.W. Li, Z.X. Zhao, H.T. Ren, L. Xiao, X.K. Fu, J.A. Xia, Supercond. Science Tech. 7, 623 (1994)Google Scholar
  63. 63.
    Z.H. Wang, X.W. Cao, Solid State Commun. 109, 709 (1999)Google Scholar
  64. 64.
    H. Khosroabadi, V. Daadmehr, M. Akhavan, Physica C 384, 169 (2003)Google Scholar
  65. 65.
    H. Shakeripour, M. Akhavan, Supercond. Sci. Technol. 14, 234 (2001)Google Scholar
  66. 66.
    J.T. Manscon, J. Giapintzakis, D.M. Ginsberg, Phys. Rev. B 54, 12517 (1996)Google Scholar
  67. 67.
    C. Li, H. Li, D. Jin, Y. He, G. Xiong, G. Lian, D. Yin, Physica C 341-348, 2047 (2000)Google Scholar
  68. 68.
    A. Pomar, S.R. Curras, J.A. Veira, F. Vidal, Phys. Rev. B 53, 8245 (1996)Google Scholar
  69. 69.
    J.S. Moodera, R. Meservey, J.E. Tkaczyk, C.X. Hao, G.A. Gibson, P.M. Tedrow, Phys. Rev. B 37, 619 (1988)Google Scholar
  70. 70.
    H.S. Gamchi, G.J. Russell, K.N.R. Taylor, Phys. Rev. B 50, 12950 (1994)Google Scholar
  71. 71.
    B. Oh, K. Char, A.D. Kent, M. Naito, M.R. Beasley, T.H. Geballe, R.H. Hammond, A. Kapitulnik, J.M. Graybeal, Phys. Rev. B 37, 7861 (1988)Google Scholar
  72. 72.
    H. Shakeripour, M. Akhavan, Iran. J. Phys. Res. 3, 39, (2002)Google Scholar
  73. 73.
    H. Shakeripour, M. Akhavan, in: Proceedings of the 1st Regional Conference on Magnetic and Superconducting Materials (MSM-99), edited by M. Akhavan, J. Jensen, K. Kitazawa (World Scientific, Singapore, 2000), Vol. A, p. 523Google Scholar
  74. 74.
    D.T. Verebelyi, D.K. Christen, R. Feenstra, C. Cantoni, A. Goyal, D.F. Lee, M. Paranthaman, P.N. Arendt, R.F. Depaula, J.R. Groves, C. Prouteau, Appl. Phys. Lett. 76, 1755 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Magnet Research Laboratory (MRL), Department of PhysicsSharif University of TechnologyTehranIran

Personalised recommendations