Dynamics of polaron in a polymer chain with impurities

  • Y. H. Yan
  • Z. An
  • C. Q. Wu
Article

Abstract.

In a polymer chain, an extra electron or hole distorts the chain to form a charged polaron, which is the charge carrier being responsible for conductivity. When an intermediate-strength electric field is applied, the polaron will be accelerated for a short time and then move at a constant velocity. The dynamical process of polaron in a polymer chain with impurities is simulated within a non-adiabatic evolution method, in which the electron wave function is described by the time-dependent Schrödinger equation while the polymer lattice is treated classically by a Newtonian equation of motion. We have considered two kinds of dynamical processes, one is the field-induced depinning of a charged polaron, which is initially bound by an attractive impurity; and the other is the scattering of a polaron from an impurity. In the former process, the charged polaron will depart from the attractive impurity only for the applied field with strength over a threshold, otherwise, the polaron will oscillate around the impurity. In the latter process, the charged polaron moves through the impurity in the presence of an electric field while it will be bounced back for a repulsive impurity or trapped to oscillate around an attractive impurity in the case that the applied electric field is weak and just be present for the polaron acceleration.

Keywords

Neural Network Wave Function Charge Carrier Polymer Chain Dynamical Process 

References

  1. 1.
    I.H. Campbell, D.L. Smith, Solid State Physics 55, 1 (2001) and references thereinCrossRefGoogle Scholar
  2. 2.
    W.P. Su, J.R. Schrieffer, A.J. Heeger, Phys. Rev. Lett. 42, 1698 (1979)CrossRefADSGoogle Scholar
  3. 3.
    S.A. Brazovskii, N.N. Kirova, Sov. Phys. JETP Lett. 33, 4 (1981)ADSGoogle Scholar
  4. 4.
    A.J. Heeger, S. Kivelson, J.R. Schrieffer, W.P. Su, Rev. Mod. Phys. 60, 781 (1988)ADSGoogle Scholar
  5. 5.
    W.P. Su, J.R. Schrieffer, Proc. Natl. Acad. Sci. USA 77, 1839 (1980)Google Scholar
  6. 6.
    Y. Ono, A. Terai, J. Phys. Soc. Jpn 59, 2893 (1990)ADSGoogle Scholar
  7. 7.
    S.V. Rakhmanova, E.M. Conwell, Appl. Phys. Lett. 75, 1518 (1999)ADSGoogle Scholar
  8. 8.
    A. Johansson, S. Stafström, Phys. Rev. Lett. 86, 3602 (2001)CrossRefADSGoogle Scholar
  9. 9.
    C.Q. Wu, Y. Qiu, Z. An, K. Nasu, Phys. Rev. B 68, 125416 (2003)ADSGoogle Scholar
  10. 10.
    J.F. Yu, C.Q. Wu, X. Sun, K. Nasu, Phys. Rev. B 70, 064303 (2004)ADSGoogle Scholar
  11. 11.
    A.R. Bishop, D.K. Campbell, P.S. Lomdahl, B. Horovitz, S.R. Phillpot, Phys. Rev. Lett. 52, 671 (1984); A.R. Bishop, D.K. Campbell, P.S. Lomdahl, B. Horovitz, S.R. Phillpot, Synth. Met. 9, 223 (1984)ADSGoogle Scholar
  12. 12.
    S.V. Rakhmanova, E.C. Conwell, Synth. Met. 110, 37 (2000)Google Scholar
  13. 13.
    A. Terai, Y. Ono, J. Phys. Soc. Jpn 60, 196 (1991)ADSGoogle Scholar
  14. 14.
    C. da S. Pinheiro, G.M. e Silva, Phys. Rev. B 65, 094304 (2002)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • Y. H. Yan
    • 1
  • Z. An
    • 1
  • C. Q. Wu
    • 1
  1. 1.Research Center for Theoretical PhysicsFudan UniversityShanghaiP.R. China

Personalised recommendations