The electronic contribution to the specific heat of NdBa \(\mathsf{_2}\mathsf{Cu_3}\mathsf{O_{6 + x}}\)

  • U. Tutsch
  • P. Schweiss
  • H. Wühl
  • B. Obst
  • Th Wolf


From measurements of the specific heat of \(\mathrm{NdBa_2Cu_3O_{6 + \mathnormal{x}}}\) in the temperature range between 20 K and 300 K the electronic contribution C e (T)/T has been derived. The results depend strongly on the assumptions made for the normal-state reference, especially the phonon contribution. Taking into account entropy conservation between the superconductor and a hypothetical normal-state reference, we found a temperature independent electronic contribution of this normal-state reference without any sign of a pseudogap for both optimum doped and underdoped samples. For oxygen concentrations between x = 0.79 and x = 0.89 a broad hump in C e (T)/T is observed around 120 K, which we ascribe to pair formation above T c . The dependence of the hole concentration n h in the copper oxide planes on the oxygen concentration x in the copper oxide chains was calculated by means of bond-valence sums. We found that the optimum doping of the copper oxide planes is n h,opt = 0.24 for \(\mathrm{\mathnormal{R}Ba_2Cu_3O_{6 + \mathnormal{x}}}\) (R = Nd, Y) irrespective of the element on the rare-earth site.


Entropy Neural Network Complex System Oxygen Concentration Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.J. Tao, F. Lu, E.L. Wolf, Physica C 282-287, 1507 (1997)Google Scholar
  2. 2.
    Ch. Renner, B. Revaz, J.-Y. Genoud, K. Kadowaki, Ø. Fischer, Phys. Rev. Lett. 80, 149 (1998)CrossRefGoogle Scholar
  3. 3.
    J. Rossat-Mignod, L.P. Regnault, C. Vettier, P. Bourges, P. Burlet, J. Bossy, J.Y. Henry, G. Lapertot, Physica C 185-189, 86 (1991)Google Scholar
  4. 4.
    H. Ding, T. Yokoya, J.C. Campuzano, T. Takahashi, M. Randeria, M.R. Norman, T. Mochiku, K. Kadowaki, J. Giapintzakis, Nature 382, 51 (1996)CrossRefGoogle Scholar
  5. 5.
    A.G. Loeser, Z.-X. Shen, D.S. Dessau, D.S. Marshall, C.H. Park, P. Fournier, A. Kapitulnik, Science 273, 325 (1996)Google Scholar
  6. 6.
    W.W. Warren, Jr., R.E. Walstedt, G.F. Brennert, R.J. Cava, R. Tycko, R.F. Bell, G. Dabbagh, Phys. Rev. Lett. 62, 1193 (1989)CrossRefGoogle Scholar
  7. 7.
    R.E. Walstedt, W.W. Warren, Jr., R.F. Bell, R.J. Cava, G.P. Espinosa, L.F. Schneemeyer, J.V. Waszczak, Phys. Rev. B 41, 9574 (1990)CrossRefGoogle Scholar
  8. 8.
    M. Takigawa, A.P. Reyes, P.C. Hammel, J.D. Thompson, R.H. Heffner, Z. Fisk, K.C. Ott, Phys. Rev. B 43, 247 (1991)CrossRefGoogle Scholar
  9. 9.
    B. Batlogg, H.Y. Hwang, H. Takagi, R.J. Cava, H.L. Kao, J. Kwo, Physica C 235-240, 130 (1994)Google Scholar
  10. 10.
    J.W. Loram, K.A. Mirza, J.R. Cooper, W.Y. Liang, Phys. Rev. Lett. 71, 1740 (1993)CrossRefGoogle Scholar
  11. 11.
    J.W. Loram, K.A. Mirza, J.M. Wade, J.L. Tallon, Physica C 235-240, 1735 (1994)Google Scholar
  12. 12.
    J.W. Loram, J. Luo, J.R. Cooper, W.Y. Liang, J.L. Tallon, J. Phys. Chem. Solids 62, 59 (2001)CrossRefGoogle Scholar
  13. 13.
    H. Lütgemeier, S. Schmenn, P. Meuffels, O. Storz, R. Schöllhorn, Ch. Niedermayer, I. Heinmaa, Yu. Baikov, Physica C 267, 191 (1996)Google Scholar
  14. 14.
    G. Flor, G. Chiodelli, G. Spinolo, P. Ghigna, Physica C 316, 13 (1999)Google Scholar
  15. 15.
    P. Nagel, V. Pasler, C. Meingast, A.I. Rykov, S. Tajima, Phys. Rev. Lett. 85, 2376 (2000)CrossRefGoogle Scholar
  16. 16.
    P. Nagel, Wissenschaftliche Berichte FZKA 6661, Forschungszentrum Karlsruhe (2001)Google Scholar
  17. 17.
    H. Leibrock, Wissenschaftliche Berichte, FZKA 6819, Forschungszentrum Karlsruhe (2003)Google Scholar
  18. 18.
    neutron diffraction experiments at the four-circle diffractometer 5C2 at the Orphée reactor, Laboratoire Léon Brillouin, Laboratoire commun CEA-CNRS, CE SaclayGoogle Scholar
  19. 19.
    T.B. Lindemer, E.D. Specht, P.M. Martin, M.L. Flitcroft, Physica C 255, 65 (1995)Google Scholar
  20. 20.
    D.L. Martin, Rev. Sci. Instrum. 58, 639 (1987)CrossRefGoogle Scholar
  21. 21.
    K.N. Yang, J.M. Ferreira, B.W. Lee, M.B. Maple, W.-H. Li, J.W. Lynn, R.W. Erwin, Phys. Rev. B 40, 10963 (1989)CrossRefGoogle Scholar
  22. 22.
    H. Drößler, H.-D. Jostarndt, J. Harnischmacher, J. Kalenborn, U. Walter, A. Severing, W. Schlabitz, E. Holland-Moritz, Z. Phys. B 100, 1 (1996)CrossRefGoogle Scholar
  23. 23.
    A.A. Martin, T. Ruf, T. Strach, M. Cardona, Th. Wolf, Phys. Rev. B 58, 14349 (1998)CrossRefGoogle Scholar
  24. 24.
    J.W. Lynn, B. Keimer, C. Ulrich, C. Bernhard, J.L. Tallon, Phys. Rev. B 61, R14964 (2000)Google Scholar
  25. 25.
    A.H. Moudden, G. Shirane, J.M. Tranquada, R.J. Birgeneau, Y. Endoh, K. Yamada, Y. Hidaka, T. Murakami, Phys. Rev. B 38, 8720 (1988)CrossRefGoogle Scholar
  26. 26.
    A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon Press, Oxford, 1970), p. 459Google Scholar
  27. 27.
    C. Bernhard, J.L. Tallon, Ch. Niedermayer, Th. Blasius, A. Golnik, E. Brücher, R.K. Kremer, D.R. Noakes, C.E. Stronach, E.J. Ansaldo, Phys. Rev. B 59, 14099 (1999)CrossRefGoogle Scholar
  28. 28.
    C.-S. Jee, D. Nichols, A. Kebede, S. Rahman, J.E. Crow, A.M. Ponte Goncalves, T. Mihalisin, G.H. Myer, I. Perez, R.E. Salomon, P. Schlottmann, S.H. Bloom, M.V. Kuric, Y.S. Yao, R.P. Guertin, J. Supercond. 1, 63 (1988)Google Scholar
  29. 29.
    C. Meingast, V. Pasler, P. Nagel, A. Rykov, S. Tajima, P. Olsson, Phys. Rev. Lett. 86, 1606 (2001)CrossRefGoogle Scholar
  30. 30.
    V.J. Emery, S.A. Kivelson, O. Zacher, Phys. Rev. B 56, 6120 (1997); E.W. Carlson, V.J. Emery, S.A. Kivelson, D. Orgad, cond-mat/0206217 v1 (2002)CrossRefGoogle Scholar
  31. 31.
    J.L. Tallon, Physica C 168, 85 (1990)Google Scholar
  32. 32.
    I.D. Brown, D. Altermatt, Acta Cryst. B 41, 244 (1985)CrossRefGoogle Scholar
  33. 33.
    I.D. Brown, J. Solid State Chem. 82, 122 (1989)CrossRefGoogle Scholar
  34. 34.
    I.D. Brown, J. Solid State Chem. 90, 155 (1991)CrossRefGoogle Scholar
  35. 35.
    Y. Eckstein, C.G. Kuper, Physica B 284-288, 403 (2000)Google Scholar
  36. 36.
    M. Merz, N. Nücker, P. Schweiss, S. Schuppler, C.T. Chen, V. Chakarian, J. Freeland, Y.U. Idzerda, M. Kläser, G. Müller-Vogt, Th. Wolf, Phys. Rev. Lett. 80, 5192 (1998)CrossRefGoogle Scholar
  37. 37.
    S. Schlachter, diploma thesis, University of Karlsruhe (1997), p. 36Google Scholar
  38. 38.
    J.M. Tranquada, B.J. Sternlieb, J.D. Axe, Y. Nakamura, S. Uchida, Nature 375, 561 (1995)CrossRefGoogle Scholar
  39. 39.
    C. Stock, W.J.L. Buyers, R. Liang, D. Peets, Z. Tun, D. Bonn, W.N. Hardy, R.J. Birgeneau, Phys. Rev. B 69, 014502 (2004)CrossRefGoogle Scholar
  40. 40.
    S.I. Schlachter, U. Tutsch, W.H. Fietz, K.-P. Weiss, H. Leibrock, K. Grube, Th. Wolf, B. Obst, P. Schweiss, H. Wühl, Int. J. Mod. Phys. B 14, 3673 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • U. Tutsch
    • 1
  • P. Schweiss
    • 2
  • H. Wühl
    • 1
    • 3
  • B. Obst
    • 1
  • Th Wolf
    • 2
  1. 1.Institut für Technische PhysikForschungszentrum KarlsruheKarlsruheGermany
  2. 2.Institut für FestkörperphysikForschungszentrum KarlsruheKarlsruheGermany
  3. 3.IEKPUniversität KarlsruheKarlsruheGermany

Personalised recommendations