Advertisement

An extension to the Wheeler phase-field model to allow decoupling of the capillary and kinetic anisotropies

Article

Abstract.

The formulation of the phase-field problem due to Wheeler et al. [Physica D 66, 243 (1993)] has been adopted and extended as a tool for solidification research by many groups around the World. However, an intrinsic problem of this model is that it couples two physically distinct anisotropies, those associated with the surface energy of the solid-liquid interface and attachment kinetics, into a single anisotropy parameter. In this paper we present a simple extension to the Wheeler model in which we show that introducing a complex form of the anisotropy function allows these two physical parameters to be decoupled.

Keywords

Anisotropy Surface Energy Complex Form Physical Parameter Solidification Research 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.S. Langer, in Directions in condensed matter physics edited by G. Grinstein, G. Mazenko (World Science, 1986), pp. 164-186Google Scholar
  2. 2.
    J.B. Collins, H. Levine, Phys. Rev. B 31, 6119 (1985)CrossRefGoogle Scholar
  3. 3.
    D.A. Kessler, J. Koplik, H. Levine, Adv. Phys. 37, 255 (1988)Google Scholar
  4. 4.
    Y. Pomeau, M. Ben-Amar, in Solids far from equilibrium (Cambridge University Press, 1992), pp. 365-431Google Scholar
  5. 5.
    E. Brener, D. Temkin, Phys. Rev. E 51, 351 (1995)CrossRefGoogle Scholar
  6. 6.
    G. Caginalp, Phys. Rev. A 39, 5887 (1989)CrossRefMATHGoogle Scholar
  7. 7.
    O. Penrose, P.C. Fife, Physica D 43, 44 (1990)MATHGoogle Scholar
  8. 8.
    A. Karma, W.J. Rappel, Phys. Rev. Lett. 77, 4050 (1996)CrossRefGoogle Scholar
  9. 9.
    R. Kobayashi, Physica D 63, 410 (1993)MATHGoogle Scholar
  10. 10.
    A.A. Wheeler, B.T. Murray, R.J. Schaefer, Physica D 66, 243 (1993)MATHGoogle Scholar
  11. 11.
    A. Karma, W.J. Rappel, Phys. Rev. E 53, R3017 (1996)Google Scholar
  12. 12.
    S.-L. Wang, R.F. Sekerka, A.A. Wheeler, B.T. Murray, S.R. Coriell, R.J. Braun, G.B. McFadden, Physica D 69, 189 (1993)MathSciNetMATHGoogle Scholar
  13. 13.
    R. Gonzalez-Cinca, Physica A 414, 284 (2002)Google Scholar
  14. 14.
    A.M.Mullis, R.F. Cochrane, Acta Mater. 49, 2205 (2001)CrossRefGoogle Scholar
  15. 15.
    J.A. Warren, W.J. Boettinger, Acta Metall. Mater. 43, 689 (1995)CrossRefGoogle Scholar
  16. 16.
    R.J. Braun, B.T. Murray,J. Cryst. Growth 174, 41 (1997)CrossRefGoogle Scholar
  17. 17.
    L.N. Brush, J. Cryst. Growth 247, 587 (2003)CrossRefGoogle Scholar
  18. 18.
    F. Marinozzi, M. Conti, U. Marini Bettolo Marconi, Phys. Rev. E 53, 2039 (1996)CrossRefGoogle Scholar
  19. 19.
    T. Ihle, Eur. Phys. J. B 18, 337 (2000)CrossRefGoogle Scholar
  20. 20.
    E.A. Brener, V.I. Mel’nikov, Adv. Phys. 40, 53 (1991)Google Scholar
  21. 21.
    Y. Saito, T. Sakiyama, J. Cryst. Growth. 128, 224 (1993)CrossRefGoogle Scholar
  22. 22.
    A. Barbieri, J.S. Langer, Phys. Rev. A, 39, 5314 (1989)Google Scholar
  23. 23.
    A.M. Mullis, Phys. Rev. E. 68, 011602 (2003)CrossRefGoogle Scholar
  24. 24.
    U. Bisang, J.H. Bilgram, Phys. Rev. E 54, 5309 (1996)CrossRefGoogle Scholar
  25. 25.
    E. Brener, Phys. Rev. Lett. 71, 3653 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Institute for Materials ResearchUniversity of LeedsLeedsUK

Personalised recommendations