Hopf bifurcation and chaos in a single inertial neuron model with time delay

  • Chunguang Li
  • Guangrong Chen
  • Xiaofeng Liao
  • Juebang Yu
Article

Abstract.

A delayed differential equation modelling a single neuron with inertial term subject to time delay is considered in this paper. Hopf bifurcation is studied by using the normal form theory of retarded functional differential equations. When adopting a nonmonotonic activation function, chaotic behavior is observed. Phase plots, waveform plots, and power spectra are presented to confirm the chaoticity.

Keywords

Differential Equation Time Delay Power Spectrum Normal Form Activation Function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.E. Kurten, J.W. Clark, Phys. Lett. A 144, 413 (1986)CrossRefGoogle Scholar
  2. 2.
    T.B. Kepler, S. Datt, R.B. Meyer, L.F. Abbott, Physica D 46, 449 (1990)MATHGoogle Scholar
  3. 3.
    P.K. Das II, W.C. Schieve, Z.J. Zeng, Phys. Lett. A 161, 60 (1991)CrossRefGoogle Scholar
  4. 4.
    F. Zou, J.A. Nossek, IEEE Trans. CAS 40, 166 (1993)MATHGoogle Scholar
  5. 5.
    C. Li, J. Yu, X. Liao, Phys. Lett. A 285, 368 (2001)CrossRefMATHGoogle Scholar
  6. 6.
    V.E. Bondarenko, Phys. Lett. A 236, 513 (1997)CrossRefGoogle Scholar
  7. 7.
    T. Ueta, G. Chen, in Controlling Chaos and Bifurcations in Engineering Systems, edited by G. Chen (CRC Press, Boca Raton, 2000), pp. 581-601Google Scholar
  8. 8.
    L. Chen, K. Aihara, Neural Networks 8, 915 (1995)CrossRefGoogle Scholar
  9. 9.
    L. Chen, K. Aihara, IEEE Trans. CAS-I 47, 1455 (2001)MATHGoogle Scholar
  10. 10.
    C. Li, X. Liao, J. Yu, Neurocomputing 55, 731 (2003)CrossRefGoogle Scholar
  11. 11.
    K.L. Babcock, R.M. Westervelt, Physica D 28, 305 (1987)Google Scholar
  12. 12.
    D.W. Wheeler, W.C. Schieve, Physica D 105, 267 (1997)MATHGoogle Scholar
  13. 13.
    X. Liao, K.-W. Wong, C.-S. Leung, Z. Wu, Chaos, Solitons and Fractals 12, 1535 (2001)CrossRefMATHGoogle Scholar
  14. 14.
    X. Liao, Z. Wu, J. Yu, IEEE Trans. SMC-A 29, 692 (1999)Google Scholar
  15. 15.
    X. Liao, K.-W. Wong, Z. Wu, Physica D 149, 123 (2001)MATHGoogle Scholar
  16. 16.
    M. Gilli, IEEE Trans. CAS 40, 849 (1993)MATHGoogle Scholar
  17. 17.
    J. Wei, S. Ruan, Physica D 130, 255 (1999)MATHGoogle Scholar
  18. 18.
    S. Ruan, J. Wei, Proc. Roy. Soc. Edingburgh Sect. A 129, 1017 (1999)MATHGoogle Scholar
  19. 19.
    L. Olien, J. Bélair, Physica D 102, 349 (1997)MATHGoogle Scholar
  20. 20.
    K. Gopalsamy, I. Leung, Physica D 89, 395 (1996)MATHGoogle Scholar
  21. 21.
    T. Faria, J. Diff. Equ. 168, 129 (2000)CrossRefMATHGoogle Scholar
  22. 22.
    T. Faria, L.T. Magalhães, J. Diff. Equ. 122, 181 (1995)CrossRefMATHGoogle Scholar
  23. 23.
    T. Faria, L.T. Magalhães, J. Diff. Equ. 122, 224 (1995)MATHGoogle Scholar
  24. 24.
    R. Bellman, K.L. Cooke, Differential-Difference Equations (Academic Press, New York, 1963)Google Scholar
  25. 25.
    J.K. Hale, S.M. Verduyn Lunel, Introduction to Functional Differential Equations (Springer-Verlag, New York, 1993)Google Scholar
  26. 26.
    K.L. Cooke, Z. Grossman, J. Math. Anal. Appl. 86, 592 (1982)CrossRefMATHGoogle Scholar
  27. 27.
    S.A. Campbell, J. Bélair, T. Ohira, J. Milton, Chaos 5, 640 (1995)CrossRefMATHGoogle Scholar
  28. 28.
    S.A. Campbell, J. Bélair, T. Ohira, J. Milton, J. Dynamics and Differential Equations 7, 213 (1995)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • Chunguang Li
    • 1
  • Guangrong Chen
    • 2
  • Xiaofeng Liao
    • 1
  • Juebang Yu
    • 1
  1. 1.Institute of Electronic Systems, School of Electronic EngineeringUniversity of Electronic Science and Technology of ChinaChengduP.R. China
  2. 2.Department of Electronic EngineeringCity University of Hong KongKowloon, Hong KongP.R. China

Personalised recommendations