Dynamics of threshold network on non-trivial distribution degree

Article

Abstract.

The dynamics of a threshold network (TN) with thermal noise on scale-free, random-graph, and small-world topologies are considered herein. The present analytical study clarifies that there is no phase transition independent of network structure if temperature T = 0, threshold h = 0 and the probability distribution degree P(k) satisfies P(0) = D = 0. The emergence of phase transition involving three parameters, T, h and D is also investigated. We find that a TN with moderate thermal noise extends the regime of ordered dynamics, compared to a TN in the T = 0 regime or a Random Boolean Network (RBN). A TN can be continuously reduced to an expression of RBN in the infinite T limit.

Keywords

Distribution Degree Thermal Noise Chaotic State Interaction Rule Average Connectivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.-L. Barabasi, R. Albert, Science 286, 509 (1999)MathSciNetCrossRefGoogle Scholar
  2. 2.
    D.J. Watts, S.H. Strogatz, Nature (London) 393, 440 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    R. Albert, A.-L. Barabasi, Rev. Mod. Phys. 74, 47 (2002)ADSMATHCrossRefGoogle Scholar
  4. 4.
    R. Albert, H. Jeong, A.-L. Barabasi, Nature (London) 401, 130 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    G. Caldarelli, R. Marchetti, L. Pietronero, Europhys. Lett. 52, 386 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    H. Agrawal, Phys. Rev. Lett. 89, 268702 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    H. Jeong et al. , Nature (London) 407, 42 (2000)Google Scholar
  8. 8.
    S. Maslov, K. Sneppen, Science 296, 910 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    S.A. Kauffman, J. Theor. Biol. 22, 437 (1969)MathSciNetCrossRefGoogle Scholar
  10. 10.
    S.A. Kauffman, Physica D (Amsterdam) 42, 135 (1990)ADSGoogle Scholar
  11. 11.
    M. Aldana, cond-mat/0209571Google Scholar
  12. 12.
    B. Derrida, J. Phys. A 20, L721 (1987)Google Scholar
  13. 13.
    B. Derrida, E. Gardner, A. Zippelius, Europhys. Lett. 4, 167 (1987)ADSCrossRefGoogle Scholar
  14. 14.
    R. Kree, A. Zippelius, Phys. Rev. A 36, 4421 (2000)MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    T. Rohlf, S. Bornholdt, Physica A 310, 245 (2002)ADSMATHCrossRefGoogle Scholar
  16. 16.
    B. Derrida, Y. Pomeau, Europhys. Lett. 1, 45 (1986)ADSCrossRefGoogle Scholar
  17. 17.
    A. Barrat, M. Weigh, Eur. Phys. J. B 13, 547 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    J. Marro, R. Dickman, Nonequilibrium Phase Transition in Lattice Models (Cambridge University Press, Cambridge, 1999)Google Scholar
  19. 19.
    R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 86, 3200 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    J. Karbowski, Neurocomputing 44-46, 875 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Sony CorporationShinagawa, TokyoJapan

Personalised recommendations