Advertisement

Emission wavelength engineering of InAs/InP(001) quantum wires

  • D. Fuster
  • L. González
  • Y. González
  • J. Martínez-Pastor
  • T. Ben
  • A. Ponce
  • S. I. Molina
Article

Abstract.

In this work we have studied the dependence of the optical properties of self-assembled InAs quantum wires (QWr) grown on InP(001) on the growth temperature of the InP cap layer, as a mean for controlling the InAs QWr size. Our main result is that we can tune the emission wavelength of InAs QWr either at 1.3 \(\mu \)m or 1.55 \(\mu \)m at room temperature. We suggest that the role of growth temperature is to modify the As/P exchange at the InAs QWr/InP cap layer interface and consequently the amount of InAs involved in the nanostructure. In this way, due to the enhancement of the As/P exchange, the higher the growth temperature of the cap layer, the smaller in height the InAs quantum wires. Accordingly, the emission wavelength is blue shifted with InP cap layer growth temperature as the electron and hole ground state moves towards higher energies. Optical studies related to the dynamics of carrier recombination and light emission quenching with temperature are also included.

Keywords

Recombination Optical Property Growth Temperature Emission Wavelength Layer Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. González, J.M. García, R. García, F. Briones, J. Martínez-Pastor, C. Ballesteros, Appl. Phys. Lett. 76, 1104 (2000)CrossRefGoogle Scholar
  2. 2.
    M.U. González, J.M. García, L. González, J.P. Silveira, Y. González, J.D. Gómez, F. Briones, Appl. Suf. Sci. 188, 188 (2002)CrossRefGoogle Scholar
  3. 3.
    H.R. Gutiérrez, M.A. Cotta, M.M.G. de Carvalho, Appl. Phys. Lett. 79, 3854 (2001)CrossRefGoogle Scholar
  4. 4.
    F. Briones, L. González, A. Ruiz, Appl. Phys. A 49, 729 (1989)Google Scholar
  5. 5.
    P.A. Postigo. Ph.D. thesis., Universidad Politécnica de Madrid, 1996Google Scholar
  6. 6.
    A. Rudra, R. Houdré, J.F. Carlin, M. Ilegems, J. Cryst. Growth 136, 278 (1994)CrossRefGoogle Scholar
  7. 7.
    B. Alén, J. Martínez-Pastor, A. García-Cristobal, L. González, J.M. García, Appl. Phys. Lett. 78, 4025 (2001)CrossRefGoogle Scholar
  8. 8.
    M. Notomi, S. Nojima, M. Okamoto, H. Iwamura, T. Tamamura, Phys. Rev. B 52, 11073 (1995)CrossRefGoogle Scholar
  9. 9.
    E.M. Daly, T.J. Glynn, J.D. Lambkin, L. Considine, S. Walsh, Phys. Rev. B 52, 4696 (1995)CrossRefGoogle Scholar
  10. 10.
    B. Ohnesorge, M. Albrecht, J. Oshinowo, A. Forchel, Y. Arakawa, Phys. Rev. B 54, 11 532 (1996)CrossRefGoogle Scholar
  11. 11.
    M. Gurioli, J. Martínez-Pastor, M. Colocci, C. Deparis, B. Chastaingt, J. Massies, Phy. Rev. B 46, 6922 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • D. Fuster
    • 1
  • L. González
    • 1
  • Y. González
    • 1
  • J. Martínez-Pastor
    • 2
  • T. Ben
    • 3
  • A. Ponce
    • 3
  • S. I. Molina
    • 3
  1. 1.Instituto de Microelectrónica de Madrid (CNM-CSIC)Tres Cantos, MadridSpain
  2. 2.Instituto de Ciencia de los MaterialesUniversidad de ValenciaValenciaSpain
  3. 3.Departamento de Ciencia de los Materiales e I. M. y Q. I.Universidad de CádizPuerto Real, CádizSpain

Personalised recommendations