Skip to main content
Log in

Relaxation and ordering processes in “macroscopic Wigner crystals”

  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

The equilibrium configurations of a macroscopic Wigner crystal (2D system of interacting charged balls, mechanically excited) and their evolution towards these equilibrium configurations are presented. In particular, the variations of the number of remaining dislocations at equilibrium according to the number of particles, confinement shape and temperature have been extensively explored. One important result is the exhibition of the rapid creation of an unique grain boundary and its shrinkage during the annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.J. Campbell, R.M. Ziff, Phys. Rev. B 20, 1886 (1979)

    Article  Google Scholar 

  2. E.J. Yarmachuk, R.E. Packard, J. Low Temp. Phys. 46, 479 (1982)

    Google Scholar 

  3. P. Leiderer, W. Ebner, V.B. Shikin, Surf. Sci. 113, 405 (1987)

    Article  Google Scholar 

  4. V.A. Schweigert, F.M. Peeters, P. Singha Deo, Phys. Rev. Lett. 81, 2783 (1998) and references therein

    Article  Google Scholar 

  5. N.B. Zhitenev, R.C. Ashoori, L.N. Pfeiffer, K.W. West, Phys. Rev. Lett. 79, 2308 (1997)

    Article  Google Scholar 

  6. F. Chevy, K.W. Madison, J. Dalibard, Phys. Rev. Lett. 85, 2223 (2000); P. Engels, I. Coddington, P.C. Haljan, E.A. Cornell, Phys. Rev. Lett. 89, 100403 (2002)

    Article  Google Scholar 

  7. S.L. Gilbert, J.J. Billinger, D.J. Wineland, Phys. Rev. Lett. 60, 2022 (1988)

    Article  Google Scholar 

  8. Wen Tau Juan, Zen-hong Huang, Ju-Wang hsui, Ying-Ju Lai, Lin I, Phys. Rev. E 58, 6947 (1998)

    Article  Google Scholar 

  9. J.J. Thomson, Phil. Mag. 7, 237 (1904)

    MATH  Google Scholar 

  10. F. Bolton, U. Rössler, Superlatt. Microstruct. 13, 139 (1993)

    Article  Google Scholar 

  11. V. Bedanov, F.M. Peeters, Phys. Rev. B 49, 2667 (1994)

    Article  Google Scholar 

  12. V.A. Schweigert, F.M. Peeters, Phys. Rev. B 51, 7700 (1995)

    Article  Google Scholar 

  13. Ying-Ju Lai, Lin I, Phys. Rev. E 60, 4743 (1999)

    Article  Google Scholar 

  14. L. Candido, J.P Rino, N. Studart, F.M. Peeters, J. Phys.: Condens. Matter 10, 11627 (1998)

    Article  Google Scholar 

  15. L.J. Campbell, R.M. Ziff, Phys. Rev. B 20, 1886 (1979)

    Article  Google Scholar 

  16. In previous studies we have shown that the equilibrium configurations of mesoscopic systems are in agreement with those calculated for Logarithmic interaction. Moreover we have been able to invalidate a published numerical ground configuration for N=17 particles, to show that this proposed configuration was in fact the first excited state and to suggest the actual ground state. Our experimental prediction was later confirmed numerically by the authors (the relative energy difference between the two configurations being 10−5). These indirect arguments (analytical direct derivation is a challenge) are very strong and have convinced us about the validity of the surprizing logarithmic interaction

  17. M. Saint Jean, C. Even, C. Guthmann, Europhys. Lett. 55, 45 (2001); M. Saint Jean, C. Guthmann, J. Phys.: Condens. Matter 14, 13653 (2002)

    Article  Google Scholar 

  18. J. Friedel, Dislocations (Pergamon Press Oxford, 1964)

  19. D.S. Fisher, B.I. Halperin, R. Morf, Phys. Rev. B 20, 4692 (1979)

    Article  Google Scholar 

  20. A.A. Koulakov, B.I. Shklovskii, Phys. Rev. B 57, 2352 (1998)

    Article  Google Scholar 

  21. Ying Ju Lai, Lin I, Phys. Rev. E 60, 4743 (1999)

    Article  Google Scholar 

  22. L. Bonsall, A.A. Maradudin, Phys. Rev. B 15, 1959 (1977)

    Article  Google Scholar 

  23. M. Kosterlitz, D.J. Thouless, J. Phys. C 6, 1181 (1973)

    Google Scholar 

  24. Mermin, Phys. Rev. 176, 250 (1968)

    Article  Google Scholar 

  25. B. Pouligny, R. Malzbender, P. Ryan, N. Clark, Phys. Rev. B 42, 988 (1990). This kind of argument has also be used to analyze the first-order melting transition rather than the KT process obtained in numerical studies by K. Bagchi et al. (Phys. Rev. Lett. 76, 255 (1996))

    Article  Google Scholar 

  26. M.A. Moore, A. Perez-Garrido, Phys. Rev. Lett. 82, 4078 (1999)

    Article  Google Scholar 

  27. R. Seshadri, R.M. Westervelt, Phys. Rev. B 46, 5142 (1992); R. Seshadri, R.M. Westervelt, Phys. Rev. B 46, 5150 (1992); K.J. Naidoo, J. Schnitker, J. Chem. Phys. 100, 3114 (1994)

    Article  Google Scholar 

  28. A. Pertisinidis, X. Liang, Phys. Rev. Lett. 87, 98303 (2001)

    Article  Google Scholar 

  29. W.T. Read, W. Schockley, Phys. Rev. 78, 275 (1950)

    Article  MATH  Google Scholar 

  30. R. Kobayashi, J.A. Warren, W.C. Carter, Physica D 140, 141 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Saint Jean.

Additional information

Received: 25 February 2004, Published online: 18 June 2004

PACS:

68.65.-k Low-dimensional, mesoscopic, and nanoscale systems: structure and nonelectronic properties - 73.21.-b Electron states and collective excitations in multilayers, quantum wells, mesoscopic, and nanoscale systems

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saint Jean, M., Guthmann, C. & Coupier, G. Relaxation and ordering processes in “macroscopic Wigner crystals”. Eur. Phys. J. B 39, 61–68 (2004). https://doi.org/10.1140/epjb/e2004-00171-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00171-4

Keywords

Navigation