Real Hamiltonian forms of Hamiltonian systems

  • V. S. Gerdjikov
  • A. Kyuldjiev
  • G. Marmo
  • G. Vilasi


We introduce the notion of a real form of a Hamiltonian dynamical system in analogy with the notion of real forms for simple Lie algebras. This is done by restricting the complexified initial dynamical system to the fixed point set of a given involution. The resulting subspace is isomorphic (but not symplectomorphic) to the initial phase space. Thus to each real Hamiltonian system we are able to associate another nonequivalent (real) ones. A crucial role in this construction is played by the assumed analyticity and the invariance of the Hamiltonian under the involution. We show that if the initial system is Liouville integrable, then its complexification and its real forms will be integrable again and this provides a method of finding new integrable systems starting from known ones. We demonstrate our construction by finding real forms of dynamics for the Toda chain and a family of Calogero-Moser models. For these models we also show that the involution of the complexified phase space induces a Cartan-like involution of their Lax representations.


Dynamical System Crucial Role Phase Space Initial Phase Integrable System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.S. Gerdjikov, I.M. Uzunov, E.G. Evstatiev, G.L. Diankov, Phys. Rev. E 55, 6039 (1997); V.S. Gerdjikov, D.J. Kaup, I.M. Uzunov, E.G. Evstatiev, Phys. Rev. Lett. 77, 3943 (1996)CrossRefMathSciNetGoogle Scholar
  2. 2.
    V.S. Gerdjikov, E.G. Evstatiev, R.I. Ivanov, J. Phys. A 31, 8221 (1998); J. Phys. A 33, 975 (2000)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    J.M. Arnold, Phys. Rev. E 60, 979 (1999)CrossRefMathSciNetGoogle Scholar
  4. 4.
    J. Grabowski, G. Marmo, P. Michor, Modern Physics Letters A 14, 2109 (1999); A. Ballesteros, O. Ragnisco, J. Phys. A 31, 3791 (1998)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Y. Kodama, J. Ye, Physica D 91, 321 (1996); Y. Kodama, J. Ye, Physica D 121, 89 (1998)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    J. Evans, Nucl. Phys. B 390, 225 (1993); J. Evans, J. Madsen, Phys. Lett. B 384, 131 (1996); J. Evans, J. Madsen, Nucl. Phys. B 536, 657 (1998); Erratum J. Evans, J. Madsen, Nucl. Phys. B 547, 665 (1999)CrossRefMathSciNetGoogle Scholar
  7. 7.
    V.S. Gerdjikov, A. Kyuldjiev, G. Marmo, G. Vilasi, Eur. Phys. J. B 29, 177 (2002)CrossRefMathSciNetGoogle Scholar
  8. 8.
    G. Marmo, E.G. Saletan, A. Simoni, B. Vitale, Dynamical systems: a differential geometric approach to symmetry and reduction (John Wiley & Sons, N.Y., 1985); J. Grabowski, G. Landi, G. Marmo, G. Vilasi, Fortschr. Phys. 42, 393 (1994)MathSciNetGoogle Scholar
  9. 9.
    J.F. Cornwell, Group Theory in Physics, Vol. 3. (Techniques of Physics, 7) (Academic Press, London 1984); S. Helgason, Differential geometry, Lie groups and symmetric spaces (Academic Press, 1978)Google Scholar
  10. 10.
    G. Landi, G. Marmo, G. Vilasi, J. Group Theory Phys. 2, 1 (1994)MATHGoogle Scholar
  11. 11.
    M. Giordano, G. Marmo, A. Simoni, F. Ventriglia, in Nonlinear Physics: Theory and Experiment. II\/ edited by M. Ablowitz, M. Boiti, F. Pempinelli, B. Prinari (World Scientific, 2003), p. 179Google Scholar
  12. 12.
    G. Vilasi, Hamiltonian Dynamics (World Scientific, Singapore, 2001)Google Scholar
  13. 13.
    G. Landi, G. Marmo, G. Vilasi, J. Math. Phys. 35, 808 (1994)CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    S. De Filippo, G. Marmo, M. Salerno, G. Vilasi, Nuovo Cim. B 83, 97 (1984)Google Scholar
  15. 15.
    A.V. Mikhailov, M.A. Olshanetzky, A.M. Perelomov, Comm. Math. Phys. 79, 473 (1981)MathSciNetGoogle Scholar
  16. 16.
    J. Moser, in Progr. Math. 8 (Birkhäuser, Boston, 1980); F. Calogero, Physica D 18, 280 (1986)Google Scholar
  17. 17.
    A. Perelomov, Integrable Systems of Classical Mechanics and Lie Algebras (Birkhaüser, Basel, 1990)Google Scholar
  18. 18.
    F. Calogero, Classical Many-Body Problems Amenable to Exact Treatments, Lecture Notes in Physics. Monographs 66 (Springer, 2001); F. Calogero, J. Math. Phys. 39, 5268 (1998)MATHGoogle Scholar
  19. 19.
    M.O. Katanaev, T. Klosch, W. Kummer, Ann. Phys. 276, 191 (1999)CrossRefMathSciNetMATHGoogle Scholar
  20. 20.
    G. Sparano, G. Vilasi, A.M. Vinogradov, Phys. Lett. B 513, 142 (2001); G. Sparano, G. Vilasi, A.M. Vinogradov, Diff. Geom. Appl. 16, 95 (2002); G. Sparano, G. Vilasi, A.M. Vinogradov, Diff. Geom. Appl. 17, 15 (2002)CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    G. Vilasi, P. Vitale, Classical and Quantum Gravity 19, 3333 (2002)CrossRefMathSciNetMATHGoogle Scholar
  22. 22.
    A.S. Mishenko, A.T. Fomenko, Funct. Anal. Appl. 12, 113 (1978)Google Scholar
  23. 23.
    G. Sparano, G. Vilasi, J. Geom. Phys. 36, 270 (2000)CrossRefMathSciNetMATHGoogle Scholar
  24. 24.
    S.P. Khastgir, R. Sasaki, Prog. Theor. Phys. 95, 485 (1996); S.P. Khastgir, R. Sasaki, Prog. Theor. Phys. 95, 503 (1996)MathSciNetGoogle Scholar
  25. 25.
    A.V. Mikhailov, Physica D 3, 73 (1981)CrossRefGoogle Scholar
  26. 26.
    M.A. Olshanetzky, A.M. Perelomov, Phys. Rep. 71, 313 (1983)CrossRefGoogle Scholar
  27. 27.
    M.A. Olshanetsky, A.M. Perelomov, A.G. Reyman, M.A. Semenov-Tian-Shansky, Itogi Nauki i Techniki, VINITI AN SSSR, Contemporary problems in mathematics 16, 86 (1987)Google Scholar
  28. 28.
    J. Moser, in Dynamical Systems, Theory and Applications. Lecture Notes in Physics 38 (Springer, 1975); J. Moser, Adv. Math. 16, 197 (1975)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • V. S. Gerdjikov
    • 1
    • 3
  • A. Kyuldjiev
    • 1
  • G. Marmo
    • 2
  • G. Vilasi
    • 3
  1. 1.Institute for Nuclear Research and Nuclear EnergySofiaBulgaria
  2. 2.Dipartimento di Scienze FisicheUniversitá Federico II di Napoli and Istituto Nazionale di fisica Nucleare, Sezione di Napoli, Complesso Universitario di Monte Sant’AngeloNapoliItaly
  3. 3.Dipartimento di Fisica “E.R. Caianiello”Universita di Salerno, Istituto Nazionale di fisica Nucleare, Gruppo Collegato di SalernoSalernoItaly

Personalised recommendations