Advertisement

Bond dilution in the 3D Ising model: a Monte Carlo study

  • P. E. Berche
  • C. Chatelain
  • B. Berche
  • W. Janke
Article

Abstract.

We study by Monte Carlo simulations the influence of bond dilution on the three-dimensional Ising model. This paradigmatic model in its pure version displays a second-order phase transition with a positive specific heat critical exponent \(\alpha\). According to the Harris criterion disorder should hence lead to a new fixed point characterized by new critical exponents. We have determined the phase diagram of the diluted model, starting from the pure model limit down to the neighbourhood of the percolation threshold. For the estimation of critical exponents, we have first performed a finite-size scaling study, where we concentrated on three different dilutions to check the stability of the disorder fixed point. We emphasize in this work the great influence of the cross-over phenomena between the pure, disorder and percolation fixed points which lead to effective critical exponents dependent on the concentration. In a second set of simulations, the temperature behaviour of physical quantities has been studied in order to characterize the disorder fixed point more accurately. In particular this allowed us to estimate ratios of some critical amplitudes. In accord with previous observations for other models this provides stronger evidence for the existence of the disorder fixed point since the amplitude ratios are more sensitive to the universality class than the critical exponents. Moreover, the question of non-self-averaging at the disorder fixed point is investigated and compared with recent results for the bond-diluted q = 4 Potts model. Overall our numerical results provide evidence that, as expected on theoretical grounds, the critical behaviour of the bond-diluted model is indeed governed by the same universality class as the site-diluted model.

Keywords

Ising Model Critical Exponent Percolation Threshold Amplitude Ratio Universality Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.L. Cardy, Scaling and Renormalization in Statistical Physics (Cambridge University Press, Cambridge, 1996), Chap. 8Google Scholar
  2. 2.
    In this paper, we do not discuss the case of long-range correlated disorder (e.g., the McCoy-Wu model or quantum chains) which may lead to an infinite-randomness disorder fixed point under renormalization (see, e.g., R. Sknepnek and T. Vojta, e-print cond-mat/0311394 and references therein)Google Scholar
  3. 3.
    A.B. Harris, J. Phys. C 7, 1671 (1974)CrossRefGoogle Scholar
  4. 4.
    B.N. Shalaev, Phys. Rep. 237, 129 (1994)CrossRefMathSciNetGoogle Scholar
  5. 5.
    L. Schwenger, K. Budde, C. Voges H. Pfnür, Phys. Rev. Lett. 73, 296 (1994)CrossRefGoogle Scholar
  6. 6.
    C. Voges, H. Pfnür, Phys. Rev. B 57, 3345 (1998)CrossRefGoogle Scholar
  7. 7.
    Y. ImryM. Wortis, Phys. Rev. B 19, 3580 (1979)CrossRefGoogle Scholar
  8. 8.
    M. Aizenman, J. Wehr, Phys. Rev. Lett. 62, 2503 (1989)CrossRefMathSciNetGoogle Scholar
  9. 9.
    K. Hui, A.N. Berker, Phys. Rev. Lett. 62, 2507 (1989)CrossRefGoogle Scholar
  10. 10.
    F.Y. Wu, Rev. Mod. Phys. 54, 235 (1982)CrossRefMathSciNetGoogle Scholar
  11. 11.
    B. Berche, C. Chatelain, Order, Disorder, and Criticality, edited by Yu. Holovatch (World Scientific, Singapore, 2004), p. 147, e-print cond-mat/0207421Google Scholar
  12. 12.
    A.W.W. Ludwig, Nucl. Phys. B 285 [FS19], 97 (1987)Google Scholar
  13. 13.
    S. Chen, A.M. Ferrenberg, D.P. Landau, Phys. Rev. Lett. 169, 1213 (1992); S. Chen, A.M. Ferrenberg, D.P. Landau, Phys. Rev. E 52, 1377 (1995)CrossRefGoogle Scholar
  14. 14.
    Vl. Dotsenko, M. Picco, P. Pujol, Nucl. Phys. B 455 [FS], 701 (1995)Google Scholar
  15. 15.
    G. Jug, B.N. Shalaev, Phys. Rev. B 54, 3442 (1996)CrossRefGoogle Scholar
  16. 16.
    J.L. Cardy, J.L. Jacobsen, Phys. Rev. Lett. 79, 4063 (1997)CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    M. Picco, Phys. Rev. Lett. 79, 2998 (1997)CrossRefGoogle Scholar
  18. 18.
    J.L. Jacobsen, J.L. Cardy, Nucl. Phys. B 515, 701 (1998)CrossRefMathSciNetMATHGoogle Scholar
  19. 19.
    C. Chatelain, B. Berche, Phys. Rev. Lett. 80, 1670 (1998)CrossRefGoogle Scholar
  20. 20.
    A. Roder, J. Adler, W. Janke, Phys. Rev. Lett. 80, 4697 (1998); A. Roder, J. Adler, W. Janke, Physica A 265, 28 (1999)CrossRefGoogle Scholar
  21. 21.
    T. Olson, A.P. Young, Phys. Rev. B 60, 3428 (1999)CrossRefGoogle Scholar
  22. 22.
    C. Chatelain, B. Berche, Nucl. Phys. B 572, 626 (2000)CrossRefMathSciNetMATHGoogle Scholar
  23. 23.
    W. Janke, R. Villanova, Nucl. Phys. B 489, 679 (1997)CrossRefMATHGoogle Scholar
  24. 24.
    H.G. Ballesteros, L.A. Fernández, V. Martí n-Mayor, A. Muñoz Sudupe, G. Parisi, J.J. Ruiz-Lorenzo, Phys. Rev. B 61, 3215 (2000)CrossRefGoogle Scholar
  25. 25.
    W. Janke, S. Kappler, unpublished (1996)Google Scholar
  26. 26.
    C. Chatelain, B. Berche, W. Janke, P.E. Berche, Phys. Rev. E 64, 036120 (2001)CrossRefGoogle Scholar
  27. 27.
    C. Chatelain, P.E. Berche, B. Berche, W. Janke, Comp. Phys. Comm. 147, 431 (2002)CrossRefMathSciNetMATHGoogle Scholar
  28. 28.
    C. Chatelain, P.E. Berche, B. Berche W. Janke, Nucl. Phys. B (Proc. Suppl.) 106&107, 899 (2002)Google Scholar
  29. 29.
    P.E. Berche, C. Chatelain, B. Berche, W. Janke, in: High Performance Computing in Science and Engineering, edited by S. Wagner, W. Hanke, A. Bode, F. Durst (Springer, Berlin, 2003), p. 227Google Scholar
  30. 30.
    W. Janke, P.E. Berche, C. Chatelain, B. Berche, Leipzig preprint (April 2003), e-print cond-mat/0304642, to appear in: Computer Simulation Studies in Condensed-Matter Physics XVI\/, edited by D.P. Landau, S.P. Lewis, H.-B. Schüttler (Springer, Berlin, 2004) (in print)Google Scholar
  31. 31.
    D.P. Landau, Phys. Rev. B 22, 2450 (1980)CrossRefMathSciNetGoogle Scholar
  32. 32.
    J. Marro, A. Labarto, J. Tejada, Phys. Rev. B 34, 347 (1986)CrossRefGoogle Scholar
  33. 33.
    D. Chowdhury, D. Stauffer, J. Stat. Phys. 44, 203 (1986)Google Scholar
  34. 34.
    P. Braun, M. Fähnle, J. Stat. Phys. 52, 775 (1988)Google Scholar
  35. 35.
    J.S. Wang,D. Chowdhury, J. Phys. France 50, 2905 (1989)Google Scholar
  36. 36.
    J.S. Wang, M. Wöhlert, H. Mühlenbein, D. Chowdhury, Physica A 166, 173 (1990)CrossRefMATHGoogle Scholar
  37. 37.
    T. HoleyM. Fähnle, Phys. Rev. B 41, 11709 (1990)CrossRefGoogle Scholar
  38. 38.
    H.O. Heuer, Europhys. Lett. 12, 551 (1990)Google Scholar
  39. 39.
    H.O. Heuer, Phys. Rev. B 42, 6746 (1990)CrossRefGoogle Scholar
  40. 40.
    H.O. Heuer, J. Phys. A 26, L333 (1993)Google Scholar
  41. 41.
    M. Hennecke, Phys. Rev. B 48, 6271 (1993)CrossRefGoogle Scholar
  42. 42.
    H.G. Ballesteros, L.A. Fernández, V. Martín-Mayor, A. Muñoz Sudupe, G. Parisi, J.J. Ruiz-Lorenzo, Phys. Rev. B 58, 2740 (1998)CrossRefGoogle Scholar
  43. 43.
    S. Wiseman, E. Domany, Phys. Rev. Lett. 81, 22 (1998)CrossRefGoogle Scholar
  44. 44.
    S. Wiseman, E. Domany, Phys. Rev. E 58, 2938 (1998)CrossRefGoogle Scholar
  45. 45.
    P. Calabrese, V. Martín-Mayor, A. Pelissetto, E. Vicari, Phys. Rev. E 68, 036136 (2003)CrossRefGoogle Scholar
  46. 46.
    Y. Holovatch, T. Yavors’kii, J. Stat. Phys. 92, 785 (1998)CrossRefMATHGoogle Scholar
  47. 47.
    R. Folk, Y. Holovatch, T. Yavors’kii, J. Phys. Stud. (Ukraine) 2, 213 (1998)Google Scholar
  48. 48.
    R. Folk, Y. Holovatch, T. Yavors’kii, JETP Lett. 69, 747 (1999)CrossRefGoogle Scholar
  49. 49.
    R. Folk, Y. Holovatch, T. Yavors’kii, Phys. Rev. B 61, 15114 (2000)CrossRefGoogle Scholar
  50. 50.
    R. Folk, Y. Holovatch, T. Yavors’kii, Physics Uspiekhi 173, 175 (2003) [e-print cond-mat/0106468]Google Scholar
  51. 51.
    K.B. Varnashev, Phys. Rev. B 61, 14660 (2000)CrossRefGoogle Scholar
  52. 52.
    D.V. Pakhnin, A.I. Sokolov, Phys. Rev. B 61, 15130 (2000)CrossRefGoogle Scholar
  53. 53.
    D.V. Pakhnin, A.I. Sokolov, JETP Lett. 71, 412 (2000)CrossRefGoogle Scholar
  54. 54.
    A. Pelissetto, E. Vicari, Phys. Rev. B 62, 6393 (2000)CrossRefGoogle Scholar
  55. 55.
    P. Calabrese, P. Parrucini, A. Pelissetto, E. Vicari, e-print cond-mat/0307699Google Scholar
  56. 56.
    K.E. Newman, E.K. Riedel, Phys. Rev. B 25, 264 (1982)CrossRefMATHGoogle Scholar
  57. 57.
    J. Jug, Phys. Rev. B 27, 609 (1983)CrossRefGoogle Scholar
  58. 58.
    I.O. Mayer, J. Phys. A 22, 2815 (1989)CrossRefGoogle Scholar
  59. 59.
    I.O. Mayer, A.I. Sokolov, B.N. Shalaev, Ferroelectrics 95, 93 (1989)Google Scholar
  60. 60.
    C. Bervillier, M. Shpot, Phys. Rev. B 46, 955 (1992)CrossRefGoogle Scholar
  61. 61.
    A. Aharony, A.B. Harris, S. Wiseman, Phys. Rev. Lett. 81, 252 (1998)CrossRefGoogle Scholar
  62. 62.
    R. Guida, J. Zinn-Justin, J. Phys. A 31, 8103 (1998)CrossRefMathSciNetMATHGoogle Scholar
  63. 63.
    R.H. Swendsen, J.S. Wang, Phys. Rev. Lett. 58, 86 (1987)CrossRefGoogle Scholar
  64. 64.
    A.M. Ferrenberg, R.H. Swendsen, Phys. Rev. Lett. 61, 2635 (1988)CrossRefGoogle Scholar
  65. 65.
    A.M. Ferrenberg, R.H. Swendsen, Phys. Rev. Lett. 63, 1195 (1989)CrossRefGoogle Scholar
  66. 66.
    C.D. Lorenz, R.M. Ziff, Phys. Rev. E 57, 230 (1998)CrossRefGoogle Scholar
  67. 67.
    P.E. Berche, C. Chatelain, B. Berche, W. Janke, Comp. Phys. Comm. 147, 427 (2002)CrossRefMathSciNetMATHGoogle Scholar
  68. 68.
    A.L. Talapov, H.W.J. Blöte, J. Phys. A 29, 5727 (1996)CrossRefMATHGoogle Scholar
  69. 69.
    L. Turban, Phys. Lett. A 75, 307 (1980)CrossRefGoogle Scholar
  70. 70.
    M. Hellmund, W. Janke, Comp. Phys. Comm. 147, 435 (2002)CrossRefMathSciNetMATHGoogle Scholar
  71. 71.
    A. Aharony, A.B. Harris, Phys. Rev. Lett. 77, 3700 (1996)CrossRefGoogle Scholar
  72. 72.
    K. Binder, D.P. Landau, Phys. Rev. B 21, 1941 (1980)CrossRefGoogle Scholar
  73. 73.
    L.N. Shchur, O.A. Vasilyev, Phys. Rev. E 65, 016107 (2002)CrossRefGoogle Scholar
  74. 74.
    For a list of results and references to original work, see reference [75]Google Scholar
  75. 75.
    M. Caselle, M. Hasenbusch, J. Phys. A 30, 4963 (1997)CrossRefMATHGoogle Scholar
  76. 76.
    P. Calabrese, M. De Prato, A. Pelissetto, E. Vicari, Phys. Rev. B 68, 134418 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • P. E. Berche
    • 1
  • C. Chatelain
    • 2
  • B. Berche
    • 2
  • W. Janke
    • 3
  1. 1.Groupe de Physique des Matériaux (UMR CNRS No 6634)Université de RouenSaint Etienne du Rouvray CedexFrance
  2. 2.Laboratoire de Physique des Matériaux (UMR CNRS No 7556)Université Henri Poincaré, Nancy 1Vandœuvre-les-Nancy CedexFrance
  3. 3.Institut für Theoretische PhysikUniversität LeipzigLeipzigGermany

Personalised recommendations