The European Physical Journal B

, Volume 38, Issue 2, pp 163–168 | Cite as

Betweenness centrality in large complex networks

  • M. Barthélemy


We analyze the betweenness centrality (BC) of nodes in large complex networks. In general, the BC is increasing with connectivity as a power law with an exponent \(\eta\). We find that for trees or networks with a small loop density \(\eta = 2\) while a larger density of loops leads to \(\eta < 2\). For scale-free networks characterized by an exponent \(\gamma\) which describes the connectivity distribution decay, the BC is also distributed according to a power law with a non universal exponent \(\delta\). We show that this exponent \(\delta\) must satisfy the exact bound \(\delta\geq (\gamma + 1)/2\). If the scale free network is a tree, then we have the equality \(\delta = (\gamma + 1)/2\).


Complex Network Betweenness Centrality Scale Free Network Large Density Large Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Bergé, Graphs and Hypergraphs, 2nd edn. (North-Holland, Amsterdam, 1976)Google Scholar
  2. 2.
    J. Clark, D.A. Holton, A first look at graph theory (World Scientific, 1991)Google Scholar
  3. 3.
    R. Albert, H. Jeong, A.-L. Barabási, Nature (London) 401, 130 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    R. Cohen, K. Erez, D. benAvraham, S. Havlin, Phys. Rev. Lett. 86, 3682 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    P. Holme, B.J. Kim, C.N. Yoon, S.K. Han, Phys. Rev. E 65, 056109 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 86, 3200 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    L.C. Freeman, Sociometry 40, 35 (1977)CrossRefGoogle Scholar
  8. 8.
    S. Wasserman, K. Faust, Social Network Analysis: Methods and applications (Cambridge University Press, 1994)Google Scholar
  9. 9.
    U. Brandes, J. Math. Soc. 25, 163 (2001)CrossRefGoogle Scholar
  10. 10.
    D. Wilkinson, B.A. Huberman, cond-mat/0210147Google Scholar
  11. 11.
    L.C. Freeman, S.P. Borgatti, D.R. White, Social Networks 13, 141 (1991)MathSciNetCrossRefGoogle Scholar
  12. 12.
    M.E.J. Newman, cond-mat/0309045Google Scholar
  13. 13.
    L.A.N. Amaral, A. Scala, M. Barthélemy, H.E. Stanley, Proc. Natl. Acad. Sci. USA 97, 11149 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    K.-I. Goh, B. Kahng, D. Kim, Phys. Rev. Lett. 87, 278701 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    A.-L. Barabasi, R. Albert, Science 286, 509 (1999)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    For networks with peaked connectivity distributions such as the random graph, the centrality is also peaked and the exponent \(\delta\) is not definedGoogle Scholar
  17. 17.
    K.-I. Goh, H. Jeong, B. Kahng, D. Kim, Proc. Natl. Acad. Sci. (USA) 99, 12583 (2002)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    L.P. Kadanoff, Statistical Physics: Statics, Dynamics and Renormalization (World Scientific, 2000)Google Scholar
  19. 19.
    M. Barthélemy, Phys. Rev. Lett. 91, 189803 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    A. Vazquez, R. Pastor-Satorras, A. Vespignani, Phys. Rev. E 65, 066130 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    S.N. Dorogovtsev, J.F.F. Mendes, Adv. Phys. 51, 1079 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    K.-I. Goh, B. Kahng, D. Kim, Phys. Rev. Lett. 91, 189804 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    G. Szabo, M. Alava, J. Kertesz, Phys. Rev. E 66, 036101 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    B. Bollobas, Random Graph (Academic Press, New York, 1985)Google Scholar
  25. 25.
    A. Renyi, Probability theory (New York, Elsevier, 1980)Google Scholar
  26. 26.
    D.J. Watts, D.H. Strogatz, Nature 393, 440 (1998)ADSCrossRefGoogle Scholar
  27. 27.
    It would be interesting to quantify for different types of networks the degree of anisotropy--measured by the N i‘s--versus the connectivityGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Département de Physique Théorique et AppliquéeCEABruyéres-Le-ChâtelFrance

Personalised recommendations