Intensity and wavelength dependence of the photoconductivity in Cr-doped Sr\(\mathsf{_{0.61}}\)Ba\(\mathsf{_{0.39}}\)Nb\(\mathsf{_2}\)O\(\mathsf{_6}\)

  • U. Dörfler
  • T. Granzow
  • Th Woike
  • M. Wöhlecke
  • M. Imlau
  • R. Pankrath
Article

Abstract.

We examine the light-induced charge transport properties of a series of chromium-doped \(\rm {Sr}_{0.61}\rm {Ba}_{0.39}\rm {Nb}_2\rm {O}_6\) single crystals by measurements of the optical absorption and the electric conductivity. By comparing the wavelength dependence of the specific photoconductivity and the optical absorption we show that both effects stem from the same center. The intensity dependence of the photoconductivity shows the applicability of a one-center charge transport model for high doping concentrations, while for low doping concentrations a more sophisticated model is needed. The validity of a one-center model is exemplarily verified for a crystal doped with 0.51 mol % Cr over a wide intensity range using a holographic method. The product of mobility and recombination time of photoexcited electrons is deduced from the specific photoconductivity.

Keywords

Optical Absorption Doping Concentration Transport Model Charge Transport Intensity Range 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Micheron, G. Bismuth, Appl. Phys. Lett. 20, 79 (1972)CrossRefGoogle Scholar
  2. 2.
    F. Micheron, G. Bismuth, Appl. Phys. Lett. 23, 71 (1973)CrossRefGoogle Scholar
  3. 3.
    Y. Qiao, S. Orlov, D. Psaltis, R.R. Neurgaonkar, Opt. Lett. 18, 1004 (1993)Google Scholar
  4. 4.
    R.A. Vazquez, F.R. Vachss, R.R. Neurgaonkar, M.D. Ewbank, J. Opt. Soc. Am. B 8, 1932 (1991)Google Scholar
  5. 5.
    U.B. Dörfler, R. Piechatzek, Th. Woike, M.K. Imlau, V. Wirth, L. Bohat\(\acute{\rm{y}}\), T. Volk, R. Pankrath, M. Wöhlecke, Appl. Phys. B 68, 843 (1999)CrossRefGoogle Scholar
  6. 6.
    K. Megumi, H. Kozuka, M. Kobayashi, Y. Furuhata, Appl. Phys. Lett. 30, 631 (1977)CrossRefGoogle Scholar
  7. 7.
    Y. Tomita, A. Suzuki, Appl. Phys. A 59, 579 (1994)Google Scholar
  8. 8.
    K. Sayano, A. Yariv, R.R. Neurgaonkar, Appl. Phys. Lett. 55, 328 (1989)CrossRefGoogle Scholar
  9. 9.
    K. Buse, U. van Stevendaal, R. Pankrath, E. Krätzig, J. Opt. Soc. Am. B 13, (1996) 1461Google Scholar
  10. 10.
    K. Buse, Appl. Phys. B 64, 273 (1997)CrossRefGoogle Scholar
  11. 11.
    K. Buse, A. Gerwens, S. Wevering, E. Krätzig, J. Opt. Soc. Am. B 15, 1674 (1998)Google Scholar
  12. 12.
    M. Gao, S. Kapphan, S. Porcher, R. Pankrath, J. Phys.: Condens. Matter 11, 4913 (1999)CrossRefGoogle Scholar
  13. 13.
    Th. Woike, U. Dörfler, L. Tsankov, G. Weckwerth, D. Wolf, M. Wöhlecke, T. Granzow, R. Pankrath, M. Imlau, W. Kleemann, Appl. Phys. B 72, 661 (2001)Google Scholar
  14. 14.
    L. Holtmann, Phys. Status Solidi (a) 113, K89 (1989)Google Scholar
  15. 15.
    T. Granzow, U. Dörfler, Th. Woike, M. Wöhlecke, R. Pankrath, M. Imlau, Phys. Rev. B 63, 174101 (2001)CrossRefGoogle Scholar
  16. 16.
    Ming Gao, S. Kapphan, R. Pankrath, Xiqi Feng, Yuanfen Tang, V. Vikhnin, J. Phys. Chem. Solids 61, 1775 (2000)CrossRefGoogle Scholar
  17. 17.
    V.S. Vikhnin, I. Kislova, A.B. Kutsenko, S.E. Kapphan, Solid State Commun. 121, 83 (2002)CrossRefGoogle Scholar
  18. 18.
    C. David, M. Ulex, A. Tunagy, M. Wöhlecke, K. Betzler, to be published (2004)Google Scholar
  19. 19.
    M. Meyer, M. Wöhlecke, O.F. Schirmer, Phys. Status Solidi (b) 221, R1 (2000)Google Scholar
  20. 20.
    R.A. Vazquez, M.D. Ewbank, R.R. Neurgaonkar, Opt. Commun. 80, 253 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • U. Dörfler
    • 1
  • T. Granzow
    • 1
  • Th Woike
    • 1
  • M. Wöhlecke
    • 2
  • M. Imlau
    • 2
  • R. Pankrath
    • 2
  1. 1.Institute for MineralogyUniversity of CologneCologneGermany
  2. 2.Department of PhysicsUniversity of OsnabrückOsnabrückGermany

Personalised recommendations