On the nature of the magnetic transition in a Mott insulator

  • M. Fleck
  • A. I. Lichtenstein
  • M. G. Zacher
  • W. Hanke
  • A. M. Oleś
Article

Abstract.

Using a combination of exact enumeration and the dynamical mean-field theory (DMFT) we study the drastic change of the spectral properties, obtained in the half-filled two-dimensional Hubbard model at a transition from an antiferromagnetic to a paramagnetic Mott insulator, and compare it with the results obtained using the quantum Monte Carlo method. The coherent hole (electron) quasiparticle spin-polaron subbands are gradually smeared out when the AF order disappears, either for increasing Coulomb repulsion U at fixed temperature T, or for increasing T at fixed U. Within the DMFT we present numerical evidence (a continuous disappearence of the order parameter) suggesting that the above magnetic transition is second order both in two and in three dimensions.

Keywords

Monte Carlo Method Spectral Property Drastic Change Exact Enumeration Hubbard Model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998)CrossRefGoogle Scholar
  2. 2.
    D.B. McWhan, A. Menth, J.P. Remeika, W.F. Brinkman, T.M. Rice, Phys. Rev. Lett. 27, 941 (1971); W. Bao, C. Broholm, G. Aeppli, P. Dai, J.M. Honig, P. Metcalf, Phys. Rev. Lett. 78, 507 (1997); W. Bao, C. Broholm, G. Aeppli, S.A. Carter, P. Dai, T.F. Rosenbaum, J.M. Honig, P. Metcalf, S.F. Trevino, Phys. Rev. B 58, 12727 (1998)CrossRefGoogle Scholar
  3. 3.
    K. Held, G. Keller, V. Eyert, D. Vollhardt, V.I. Anisimov, Phys. Rev. Lett. 86, 5345 (2002)CrossRefGoogle Scholar
  4. 4.
    J. Hubbard, Proc. Roy. Soc. Lond. A 276, 238 (1963)Google Scholar
  5. 5.
    R. Preuss, W. Hanke, W. von der Linden, Phys. Rev. Lett. 75, 1344 (1995)CrossRefGoogle Scholar
  6. 6.
    M. Ulmke, M.T. Scalettar, A. Nazarenko, E. Dagotto, Phys. Rev. B 54, 16523 (1996)CrossRefGoogle Scholar
  7. 7.
    C. Gröber, R. Eder, W. Hanke, Phys. Rev. B 62, 4336 (2000)CrossRefGoogle Scholar
  8. 8.
    A. Dorneich, M.G. Zacher, C. Gröber, R. Eder, Phys. Rev. B 61, 12816 (2000)CrossRefGoogle Scholar
  9. 9.
    A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)CrossRefMathSciNetGoogle Scholar
  10. 10.
    W. Metzner, D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989)CrossRefGoogle Scholar
  11. 11.
    M. Fleck, A.I. Lichtenstein, E. Pavarini, A.M. Oleś, Phys. Rev. Lett. 84, 4962 (2000)CrossRefGoogle Scholar
  12. 12.
    M. Fleck, A.I. Lichtenstein, A.M. Oleś, L. Hedin, V.I. Anisimov, Phys. Rev. Lett. 80, 2393 (1998)CrossRefGoogle Scholar
  13. 13.
    W.F. Brinkman, T.M. Rice, Phys. Rev. B 2, 1324 (1970)CrossRefGoogle Scholar
  14. 14.
    W. Metzner, P. Schmit, D. Vollhardt, Phys. Rev. B 45, 2237 (1992); R. Strack, D. Vollhardt, Phys. Rev. B 46, 13852 (1992)CrossRefGoogle Scholar
  15. 15.
    It was also suggested that a continuous transition takes place in the infinite-dimensional Hubbard model [J. Schlipf, M. Jarrell, P.G.J. van Dongen, N. Blümer, S. Kehrein, T. Prushke, D. Vollhardt, Phys. Rev. Lett. 82, 4890 (1999)], but an accurate treatment of reference [17] gives the phase coexistence in the low temperature regime and shows that this transition is first orderCrossRefGoogle Scholar
  16. 16.
    G. Moeller, Q. Si, G. Kotliar, M.J. Rozenberg, D.S. Fisher, Phys. Rev. Lett. 74, 2082 (1995)CrossRefGoogle Scholar
  17. 17.
    M.J. Rozenberg, R. Chitra, G. Kotliar, Phys. Rev. Lett. 83, 3498 (1999)Google Scholar
  18. 18.
    R. Bulla, T. Pruschke, A.C. Hewson, J. Phys.: Condens. Matter 10, 8365 (1998); R. Zitzler, N. Tong, T. Pruschke, R. Bulla, ArXiv:cond-mat/0308202, unpublished (2003)CrossRefGoogle Scholar
  19. 19.
    C. Gros, W. Wenzel, R. Valent\’i, G. Hülsenbeck, J. Stolze, Europhys. Lett. 27, 299 (1994)Google Scholar
  20. 20.
    R. Noack, R. Gebhard, Phys. Rev. Lett. 82, 1915 (1999)CrossRefGoogle Scholar
  21. 21.
    J.E. Hirsch, Phys. Rev. B 35, 1851 (1987)CrossRefGoogle Scholar
  22. 22.
    R.T. Scalettar, D.J. Scalapino, R.L. Sugar, D. Toussaint, Phys. Rev. B 39, 4711 (1989)CrossRefGoogle Scholar
  23. 23.
    M. Cyrot, H. Kaga, Phys. Rev. Lett. 77, 5134 (1996)CrossRefGoogle Scholar
  24. 24.
    R. Staudt, M. Dzierzawa, A. Muramatsu, Eur. Phys. J. B 17, 411 (2000)CrossRefGoogle Scholar
  25. 25.
    J.E. Hirsch, S. Tang, Phys. Rev. Lett. 62, 591 (1989)CrossRefGoogle Scholar
  26. 26.
    S. Moukouri, M. Jarrell, Phys. Rev. Lett. 87, 167010 (2001)CrossRefGoogle Scholar
  27. 27.
    R. Preuss, W. Hanke, C. Gröber, H.G. Evertz, Phys. Rev. Lett. 79, 1122 (1997)CrossRefGoogle Scholar
  28. 28.
    E. Arrigoni, G.C. Strinati, Phys. Rev. B 44, 7455 (1991); R. Frésard, P. Wölfle, J. Phys.: Condens. Matter 4, 3625 (1992)CrossRefGoogle Scholar
  29. 29.
    A. Georges, G. Kotliar, Phys. Rev. B 45, 6479 (1992); M. Jarrell, Phys. Rev. Lett. 69, 168 (1992)CrossRefGoogle Scholar
  30. 30.
    S.R. White, Phys. Rev. B 46, 5678 (1992); M. Vekić, S.R. White, Phys. Rev. B 47, 1160 (1993)CrossRefGoogle Scholar
  31. 31.
    As a consequence of the local self-energy, the Green’s functions found along the AF BZ are degenerate in the DMFT, while in reality they are only nearly degenerate, as obtained in the 2D-QMC methodGoogle Scholar
  32. 32.
    A.M. Oleś, G. Stollhoff, Phys. Rev. B 29, 314 (1984)CrossRefGoogle Scholar
  33. 33.
    This hysteresis appears in a range of U values in which two locally stable solutions of the DMFT equations exist: a global minimum for the antiferromagnetic state, and a local minimum for the paramagnetic stateGoogle Scholar
  34. 34.
    Equation (8) is based on experimental data, and was introduced by G.S. Rushbrooke, P.J. Wood, Mol. Phys. 1, 257 (1958); more discussion is given in: “Ferromagnetism” in Encyclopedia of Physics\/, edited by H.P.J. Wijn (Springer, Berlin, 1966), Vol. XVIII/2, pp. 1-273Google Scholar
  35. 35.
    A.W. Sandvik, Phys. Rev. Lett. 80, 5196 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • M. Fleck
    • 1
  • A. I. Lichtenstein
    • 2
  • M. G. Zacher
    • 3
  • W. Hanke
    • 3
  • A. M. Oleś
    • 1
    • 4
  1. 1.Max-Planck-Institut für FestkörperforschungStuttgartGermany
  2. 2.University of NijmegenED NijmegenThe Netherlands
  3. 3.Institut für Theoretische Physik und AstrophysikUniversität WürzburgWürzburgGermany
  4. 4.Marian Smoluchowski Institute of PhysicsJagellonian UniversityKrakówPoland

Personalised recommendations