Advertisement

LDA and GGA investigations of some ground state properties of aluminium with the all electron MAPW method

  • H. Bross
Article

Abstract

Both in local-density approximation (LDA) and in generalised-gradient approximation (GGA) the electronic structure of Aluminium is evaluated by use of the modified augmented plane wave (MAPW) self-consistent scheme. The LDA based on the exchange correlation functional by Vosko, Wilk and Nusair gives the equilibrium lattice constant in good accord with its experimental value. The hole sheet of the Fermi surface, h 2, is well described by weakly distorted spheres with origin at \((2,0,0)\frac{2\pi} {a}\) and \((1,1,1) \frac{2\pi}{a}\) in the reciprocal lattice. Near and above the equilibrium lattice constant the electronic sheet, e 3, is found to be quite similar to the model originally proposed by Ashcroft. However, even moderate compressions induce a drastic variation.

Keywords

Fermi Surface Brillouin Zone Ground State Property Augmented Plane Wave Equilibrium Lattice Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10051_2004_73_MOESM1_ESM.pdf (42 kb)
Supplementary material to H. Bross, LDA and GGA investigations of some ground state properties of aluminium with the all electron MAPW method

References

  1. 1.
    N.W. Ashcroft, Phil. Mag. 8, 2055 (1963)ADSCrossRefGoogle Scholar
  2. 2.
    W.A. Harrison, Phys. Rev. 118, 1182 (1960)ADSCrossRefGoogle Scholar
  3. 3.
    C.O. Larson, W.L. Gordon, Phys. Rev. 156, 703 (1967)ADSCrossRefGoogle Scholar
  4. 4.
    J.R. Anderson, S.S. Lane, Phys. Rev. B 2, 298 (1970)ADSCrossRefGoogle Scholar
  5. 5.
    P.T. Coleridge, P.M. Holtham, J. Phys. F 7, 1891 (1977)ADSCrossRefGoogle Scholar
  6. 6.
    W. Joss, R. Monnier, J. Phys. F 10, 9 (1980)ADSCrossRefGoogle Scholar
  7. 7.
    P.T. Coleridge, J. Phys. F 12, 2563 (1982)ADSCrossRefGoogle Scholar
  8. 8.
    A. Khein, D.J. Singh, C.J. Umrigar, Phys. Rev. B 51, 4105 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200 (1980)MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    J.C. Boettger, S.B. Trickey, Phys. Rev. B 51, 15623 (1995); J.C. Boettger, S.B. Trickey, Phys. Rev. B 53, 3007 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    H. Bross, G. Bohn, G. Meister, W. Schubö, H. Stöhr, Phys. Rev. B 2, 3098 (1970)ADSCrossRefGoogle Scholar
  12. 12.
    H. Bross, R. Eder, Phys. Stat. Solidi (b) 144, 175 (1987)ADSCrossRefGoogle Scholar
  13. 13.
    H. Bross, R. Stryczek, Phys. Stat. Solidi (b) 144, 675 (1987)ADSCrossRefGoogle Scholar
  14. 14.
    H. Bross, Phys. Stat. Solidi (b) 229, 1359 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    V.L. Moruzzi, J.F. Janak, A.R. Williams, Calculated Electronic Properties of Metals (Pergamon Press, New York-Toronto-Sydney-Frankfurt-Paris, 1978)Google Scholar
  16. 16.
    A. Bansil, Solid State Commun. 16, 885 (1975)ADSCrossRefGoogle Scholar
  17. 17.
    W.R. Fehlner, S.H. Vosko, Can. J. Phys. 54, 2159 (1976)ADSCrossRefGoogle Scholar
  18. 18.
    W.R. Fehlner, S.B. Nickerson, S.H. Vosko, Solid State Commun. 19, 83 (1976)ADSCrossRefGoogle Scholar
  19. 19.
    R. Prasad, A. Bansil, Phys. Rev. B 21, 496 (1980)ADSCrossRefGoogle Scholar
  20. 20.
    H. Bross, unpublished resultsGoogle Scholar
  21. 21.
    J.P. Perdew, in Electronic Structure of Solids 91 edited by P. Ziesche, H. Eschrig (Akademie-Verlag, Berlin, 1991)Google Scholar
  22. 22.
    J.P. Perdew, K. Burke, E. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  23. 23.
    D.J. Chadi, M.L. Cohen, Phys. Rev. B 8, 5747 (1973)MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. 13, 5188 (1976)MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    H. Bross, J. Phys. F 8, 2631 (1978)ADSCrossRefGoogle Scholar
  26. 26.
    L. Hedin, B.I. Lundqvist, J. Phys. C 4, 2064 (1971)ADSCrossRefGoogle Scholar
  27. 27.
    F.D. Murnagham, Proc. Natl. Acad. Sci. USA 30, 244 (1944); J.C. Boettger, S.B. Trickey, Phys. Rev. B 32, 3391 (1985)ADSCrossRefGoogle Scholar
  28. 28.
    J. Vallin, M. Mongy, K. Salma, O. Beckman, J. Appl. Phys. 35, 1825 (1964)ADSCrossRefGoogle Scholar
  29. 29.
    A. Seeger, O. Buck, Z. Naturforsch. a 15, 1056 (1960)MathSciNetADSMATHGoogle Scholar
  30. 30.
    J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992)ADSCrossRefGoogle Scholar
  31. 31.
    S. Kurth, J. Perdew, P. Blaha, Inter. J. Quantum Chem. 75, 889 (1999)CrossRefGoogle Scholar
  32. 32.
    Landolt-Börnstein, Volume 13c (Springer Berlin, Heidelberg, New York, Tokyo, 1984), p. 36Google Scholar
  33. 33.
    B.F. Figgins, G.O. Jones, D.P. Riley, Phil. Mag. 1, 747 (1956)ADSCrossRefGoogle Scholar
  34. 34.
    J.G. Daunt in Progress in Low Temperature Physics edited by C.J. Gorter (North-Holland Publishing Company Amsterdam, 1964), Vol. 1, p. 210Google Scholar
  35. 35.
    N.W. Ashcroft, J.W. Wilkins, Phys. Lett. 14, 285 (1965)ADSGoogle Scholar
  36. 36.
    G. Grimvall, Phys. Kondens. Materie 6, 15 (1967)ADSGoogle Scholar
  37. 37.
    Landolt-Börnstein, Volume 13c (Springer Berlin, Heidelberg, New York, 1984), p. 39Google Scholar
  38. 38.
    T.W. Moore, F. Spong, Phys. Rev. 125, 846 (1962)ADSCrossRefGoogle Scholar
  39. 39.
    R. Griessen, R.S. Sorbello, Phys. Rev. B 6, 2198 (1972)ADSCrossRefGoogle Scholar
  40. 40.
    D. Mearns, Phys. Rev. B 38, 5906 (1988)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2003

Authors and Affiliations

  1. 1.Sektion Physik Universität MünchenMünchenGermany

Personalised recommendations