Electrohydrodynamic wave-packet collapse and soliton instability for dielectric fluids in (2 + 1)-dimensions



A weakly nonlinear theory of wave propagation in two superposed dielectric fluids in the presence of a horizontal electric field is investigated using the multiple scales method in (2 + 1)-dimensions. The equation governing the evolution of the amplitude of the progressive waves is obtained in the form of a two-dimensional nonlinear Schrödinger equation. We convert this equation for the evolution of wave packets in (2 + 1)-dimensions, using the function transformation method, into an exponentional and a Sinh-Gordon equation, and obtain classes of soliton solutions for both the elliptic and hyperbolic cases. The phenomenon of nonlinear focusing or collapse is also studied. We show that the collapse is direction-dependent, and is more pronounced at critical wavenumbers, and dielectric constant ratio as well as the density ratio. The applied electric field was found to enhance the collapsing for critical values of these parameters. The modulational instability for the corresponding one-dimensional nonlinear Schrödinger equation is discussed for both the travelling and standing waves cases. It is shown, for travelling waves, that the governing evolution equation admits solitary wave solutions with variable wave amplitude and speed. For the standing wave, it is found that the evolution equation for the temporal and spatial modulation of the amplitude and phase of wave propagation can be used to show that the monochromatic waves are stable, and to determine the amplitude dependence of the cutoff frequencies.


Soliton Solitary Wave Wave Packet Modulational Instability Solitary Wave Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974)Google Scholar
  2. 2.
    V.I. Karpman, Nonlinear Waves in Dispersive Media (Pergamon Press, New York, 1975)Google Scholar
  3. 3.
    V.E. Zakharov, A.B. Shabat, Sov. Phys. JETP 34, 62 (1972)ADSGoogle Scholar
  4. 4.
    E. Infeld, R. Rowlands, Nonlinear Waves, Solitons and Chaos (Cambridge University Press, Cambridge, 1990)Google Scholar
  5. 5.
    P.L. Kelley, Phys. Rev. Lett. 15, 1005 (1965)ADSCrossRefGoogle Scholar
  6. 6.
    J.R. Taylor, Optical Solitons-Theory and Experiments (Cambridge University Press, Cambridge, 1992)Google Scholar
  7. 7.
    N.N. Akhmediev, A. Ankiewicz, Solitons-Nonlinear Pulses and Beams (T.J. International Ltd, Great Britain, 1997)Google Scholar
  8. 8.
    A. Hasegawa, Optical Solitons in Fibers (Springer-Verlag, Berline, 1989)Google Scholar
  9. 9.
    K. Konno, H. Suzuki, Physica Scripta 20, 382 (1979)ADSCrossRefGoogle Scholar
  10. 10.
    E.A. Kuznetsov, Chaos 6, 381 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    L. Bergé, Phys. Rep. 303, 259 (1998); L. Bergé, Phys. Lett. A 189, 290 (1994)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    D.N. Gupta, A.K. Sharma, Physica Scripta 66, 262 (2002)ADSMATHCrossRefGoogle Scholar
  13. 13.
    A.H. Khater, D.K. Callebaut, W. Malfliet, A.R. Seadawy, Physica Scripta 64, 533 (2001)ADSMATHCrossRefGoogle Scholar
  14. 14.
    Wave Collapse edited by V.E. Zakharov, Special Issue, Physica D 52, 1 (1991)CrossRefGoogle Scholar
  15. 15.
    E.A. Kuznetsov, J.J. Rasmussen, K. Rypdal, S.K. Turitsyn, Physica D 87, 273 (1995)MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    Y.S. Kivshar, D.E. Pelinovsky, Phys. Rep. 331, 117 (2000)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    G. Fibich, SIAM J. Appl. Math. 61, 1680 (2001)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    G. Fibich, X.-P. Wang, Physica D 175, 96 (2003)MathSciNetADSMATHCrossRefGoogle Scholar
  19. 19.
    A. Slunyaev, C. Kharif, E. Pelinovsky, T. Talipova, Physica D 173, 77 (2002)MathSciNetADSMATHCrossRefGoogle Scholar
  20. 20.
    R.K. Dodd, J.C. Eilbexk, J.D. Gibbon, H.C. Morrin, Solitons and Nonlinear Wave Equations (Academic Press, New York, 1982)Google Scholar
  21. 21.
    C. Sulem, P.-L. Sulem, Nonlinear Analysis 30, 833 (1997)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    C. Sulem, P.-L. Sulem, Nonlinear Schrödinger Equation: Self-Focusing Instability and Wave Collapse (Springer-Verlag, Berlin, 1999)Google Scholar
  23. 23.
    A.C. Newell, in Solitons and Condensed Matter Physics, edited by A.R. Bishop, T. Schneider, Vol. 8, Springer Series in Solid State Sciences (Springer-Verlag, 1978), pp. 52-67Google Scholar
  24. 24.
    B.J. LeMesurier, G.C. Papanicolaou, C. Sulem, P.L. Sulrm, in Partial Differential Equations, edited by M.G. Grandall, P.H. Rabinovitz, R.E. Turner (Academic Press, New York, 1987), pp. 159-201Google Scholar
  25. 25.
    D.W. McLaughlin, G.C. Papanicolaou, C. Sulem, P.-L. Sulem, Phys. Rev. A 34, 1200 (1986)ADSCrossRefGoogle Scholar
  26. 26.
    A. Tovbis, S. Venakides, Physica D 146, 150 (2000)MathSciNetADSMATHCrossRefGoogle Scholar
  27. 27.
    L. Bergé, J.J. Rasmussen, in Nonlinear Science at the Dawn of the 21st Century, edited by P.L. Christiansen, M.P. Sorensen, A.C. Scott, Lecture Notes in Physics, Vol. 542 (2000), pp. 213-228Google Scholar
  28. 28.
    P.G. Grinevich, Physica D 152/153, 20 (2001)Google Scholar
  29. 29.
    H.-Y. Ruan, Y.-X. Chen, Chaos, Solitons & Fractals 15, 947 (2003)ADSMATHCrossRefGoogle Scholar
  30. 30.
    V.E. Zakharov, V.V. Sobolev, V.S. Synakh, JETP Lett. 14, 390 (1971)ADSGoogle Scholar
  31. 31.
    Y. Matsuno, Phys. Lett. A 265, 358 (2000)MathSciNetADSMATHCrossRefGoogle Scholar
  32. 32.
    S.V. Manakov, Sov. Phys. JETP 38, 248 (1974)MathSciNetADSGoogle Scholar
  33. 33.
    C. Kharif, E. Pelinovsky, T. Talipova, A. Slunyaev, JETP Lett. 73, 170 (2001)ADSCrossRefGoogle Scholar
  34. 34.
    V.E. Zakharov, Sov. Phys. JETP 35, 908 (1972)ADSGoogle Scholar
  35. 35.
    V.E. Zakharov, V.S. Synakh, Sov. Phys. JETP 41, 908 (1976)Google Scholar
  36. 36.
    J.D. Gibbon, M.J. McGuinness, Phys. Lett. A 77, 118 (1980)MathSciNetADSCrossRefGoogle Scholar
  37. 37.
    J.R. Melcher, Continuum Electromechanics (MIT Press, Cabmridge, MA, 1981)Google Scholar
  38. 38.
    N.M. Zubarev, Phys. Lett. A 243, 128 (1998); N.M. Zubarev, Tech. Phys. Lett. 27, 689 (2001)ADSCrossRefGoogle Scholar
  39. 39.
    M.F. El-Sayed, Can. J. Phys. 75, 499 (1997); M.F.El-Sayed, Physica A 255, 1 (1998); M.F. El-Sayed, Phys. Rev. E 60, 7588 (1999); M.F. El-Sayed, Arch. Appl. Mech. 71, 717 (2001); M.F. El-Sayed, Physica A 291, 211 (2001); M.F. El-Sayed, Chaos, Solitons & Fractals 14, 1137 (2002); M.F. El-Sayed, Physica Scripta (2004) (submitted)ADSCrossRefGoogle Scholar
  40. 40.
    M.F. El-Sayed, D.K. Callebaut, Physica Scripta 57, 161 (1998); M.F. El-Sayed, D.K. Callebaut, J. Colloid Interface Sci. 200, 203 (1998); M.F. El-Sayed, D.K. Callebaut, Z. Naturforsch A 53, 217 (1998); M.F. El-Sayed, D.K. Callebaut, Physica A 269, 235 (1999)ADSCrossRefGoogle Scholar
  41. 41.
    D.K. Callebaut, M.F. El-Sayed, Astrophys. Space Sci. 222, 237 (1994); D.K. Callebaut, M.F. El-Sayed, Phys. Lett. A 232, 126 (1997)ADSMATHCrossRefGoogle Scholar
  42. 42.
    A.H. Nayfeh, Perturbation Methods (Wiley, New York, 1973)Google Scholar
  43. 43.
    A.A. Mohamed, E.F. Elshehawey, Arab. J. Sci. Eng. 9, 345 (1984)MATHGoogle Scholar
  44. 44.
    D.-S. Lee, Z. Naturforsch A 54, 335 (1999)Google Scholar
  45. 45.
    F.H. Berkshire, J.D. Gibbon, Stud. Appl. Math. 69 , 229 (1983)MathSciNetMATHGoogle Scholar
  46. 46.
    M.J. Landman, G.C. Papanicolaou, C. Sulem, P.-L. Sulrm, Phys. Rev. A 38, 3837 (1988)MathSciNetADSCrossRefGoogle Scholar
  47. 47.
    J.J. Rasmusen, K. Rypdal, Physica Scripta 33, 481 (1986)MathSciNetADSCrossRefGoogle Scholar
  48. 48.
    M. Singh, H.K. Khosla, S.K. Malik, J. Plasma Phys. 59, 27 (1998)ADSCrossRefGoogle Scholar
  49. 49.
    A.R.F. Elhefnawy, Int. J. Eng. Sci. 30, 1703 (1992)MATHCrossRefGoogle Scholar
  50. 50.
    H. Demiray, Int. J. Eng. Sci 40, 1897 (2002)MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    A.H. Nayfeh, J. Acoust. Soc. Am. 57, 803 (1975)ADSMATHCrossRefGoogle Scholar
  52. 52.
    W.S. Chun, P.D. Yuan, Chin. Phys. Lett. 18, 776 (2001)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2003

Authors and Affiliations

  1. 1.Department of Mathematics and Computer Science, Faculty of ScienceUnited Arab Emirates UniversityAl AinUnited Arab Emirates

Personalised recommendations