Skip to main content
Log in

Electrohydrodynamic wave-packet collapse and soliton instability for dielectric fluids in (2 + 1)-dimensions

  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract

A weakly nonlinear theory of wave propagation in two superposed dielectric fluids in the presence of a horizontal electric field is investigated using the multiple scales method in (2 + 1)-dimensions. The equation governing the evolution of the amplitude of the progressive waves is obtained in the form of a two-dimensional nonlinear Schrödinger equation. We convert this equation for the evolution of wave packets in (2 + 1)-dimensions, using the function transformation method, into an exponentional and a Sinh-Gordon equation, and obtain classes of soliton solutions for both the elliptic and hyperbolic cases. The phenomenon of nonlinear focusing or collapse is also studied. We show that the collapse is direction-dependent, and is more pronounced at critical wavenumbers, and dielectric constant ratio as well as the density ratio. The applied electric field was found to enhance the collapsing for critical values of these parameters. The modulational instability for the corresponding one-dimensional nonlinear Schrödinger equation is discussed for both the travelling and standing waves cases. It is shown, for travelling waves, that the governing evolution equation admits solitary wave solutions with variable wave amplitude and speed. For the standing wave, it is found that the evolution equation for the temporal and spatial modulation of the amplitude and phase of wave propagation can be used to show that the monochromatic waves are stable, and to determine the amplitude dependence of the cutoff frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974)

  2. V.I. Karpman, Nonlinear Waves in Dispersive Media (Pergamon Press, New York, 1975)

  3. V.E. Zakharov, A.B. Shabat, Sov. Phys. JETP 34, 62 (1972)

    ADS  Google Scholar 

  4. E. Infeld, R. Rowlands, Nonlinear Waves, Solitons and Chaos (Cambridge University Press, Cambridge, 1990)

  5. P.L. Kelley, Phys. Rev. Lett. 15, 1005 (1965)

    Article  ADS  Google Scholar 

  6. J.R. Taylor, Optical Solitons-Theory and Experiments (Cambridge University Press, Cambridge, 1992)

  7. N.N. Akhmediev, A. Ankiewicz, Solitons-Nonlinear Pulses and Beams (T.J. International Ltd, Great Britain, 1997)

  8. A. Hasegawa, Optical Solitons in Fibers (Springer-Verlag, Berline, 1989)

  9. K. Konno, H. Suzuki, Physica Scripta 20, 382 (1979)

    Article  ADS  Google Scholar 

  10. E.A. Kuznetsov, Chaos 6, 381 (1996)

    Article  ADS  Google Scholar 

  11. L. Bergé, Phys. Rep. 303, 259 (1998); L. Bergé, Phys. Lett. A 189, 290 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  12. D.N. Gupta, A.K. Sharma, Physica Scripta 66, 262 (2002)

    Article  ADS  MATH  Google Scholar 

  13. A.H. Khater, D.K. Callebaut, W. Malfliet, A.R. Seadawy, Physica Scripta 64, 533 (2001)

    Article  ADS  MATH  Google Scholar 

  14. Wave Collapse edited by V.E. Zakharov, Special Issue, Physica D 52, 1 (1991)

    Article  Google Scholar 

  15. E.A. Kuznetsov, J.J. Rasmussen, K. Rypdal, S.K. Turitsyn, Physica D 87, 273 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Y.S. Kivshar, D.E. Pelinovsky, Phys. Rep. 331, 117 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  17. G. Fibich, SIAM J. Appl. Math. 61, 1680 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. G. Fibich, X.-P. Wang, Physica D 175, 96 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. A. Slunyaev, C. Kharif, E. Pelinovsky, T. Talipova, Physica D 173, 77 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. R.K. Dodd, J.C. Eilbexk, J.D. Gibbon, H.C. Morrin, Solitons and Nonlinear Wave Equations (Academic Press, New York, 1982)

  21. C. Sulem, P.-L. Sulem, Nonlinear Analysis 30, 833 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. C. Sulem, P.-L. Sulem, Nonlinear Schrödinger Equation: Self-Focusing Instability and Wave Collapse (Springer-Verlag, Berlin, 1999)

  23. A.C. Newell, in Solitons and Condensed Matter Physics, edited by A.R. Bishop, T. Schneider, Vol. 8, Springer Series in Solid State Sciences (Springer-Verlag, 1978), pp. 52-67

  24. B.J. LeMesurier, G.C. Papanicolaou, C. Sulem, P.L. Sulrm, in Partial Differential Equations, edited by M.G. Grandall, P.H. Rabinovitz, R.E. Turner (Academic Press, New York, 1987), pp. 159-201

  25. D.W. McLaughlin, G.C. Papanicolaou, C. Sulem, P.-L. Sulem, Phys. Rev. A 34, 1200 (1986)

    Article  ADS  Google Scholar 

  26. A. Tovbis, S. Venakides, Physica D 146, 150 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. L. Bergé, J.J. Rasmussen, in Nonlinear Science at the Dawn of the 21st Century, edited by P.L. Christiansen, M.P. Sorensen, A.C. Scott, Lecture Notes in Physics, Vol. 542 (2000), pp. 213-228

  28. P.G. Grinevich, Physica D 152/153, 20 (2001)

  29. H.-Y. Ruan, Y.-X. Chen, Chaos, Solitons & Fractals 15, 947 (2003)

    Article  ADS  MATH  Google Scholar 

  30. V.E. Zakharov, V.V. Sobolev, V.S. Synakh, JETP Lett. 14, 390 (1971)

    ADS  Google Scholar 

  31. Y. Matsuno, Phys. Lett. A 265, 358 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. S.V. Manakov, Sov. Phys. JETP 38, 248 (1974)

    MathSciNet  ADS  Google Scholar 

  33. C. Kharif, E. Pelinovsky, T. Talipova, A. Slunyaev, JETP Lett. 73, 170 (2001)

    Article  ADS  Google Scholar 

  34. V.E. Zakharov, Sov. Phys. JETP 35, 908 (1972)

    ADS  Google Scholar 

  35. V.E. Zakharov, V.S. Synakh, Sov. Phys. JETP 41, 908 (1976)

    Google Scholar 

  36. J.D. Gibbon, M.J. McGuinness, Phys. Lett. A 77, 118 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  37. J.R. Melcher, Continuum Electromechanics (MIT Press, Cabmridge, MA, 1981)

  38. N.M. Zubarev, Phys. Lett. A 243, 128 (1998); N.M. Zubarev, Tech. Phys. Lett. 27, 689 (2001)

    Article  ADS  Google Scholar 

  39. M.F. El-Sayed, Can. J. Phys. 75, 499 (1997); M.F.El-Sayed, Physica A 255, 1 (1998); M.F. El-Sayed, Phys. Rev. E 60, 7588 (1999); M.F. El-Sayed, Arch. Appl. Mech. 71, 717 (2001); M.F. El-Sayed, Physica A 291, 211 (2001); M.F. El-Sayed, Chaos, Solitons & Fractals 14, 1137 (2002); M.F. El-Sayed, Physica Scripta (2004) (submitted)

    Article  ADS  Google Scholar 

  40. M.F. El-Sayed, D.K. Callebaut, Physica Scripta 57, 161 (1998); M.F. El-Sayed, D.K. Callebaut, J. Colloid Interface Sci. 200, 203 (1998); M.F. El-Sayed, D.K. Callebaut, Z. Naturforsch A 53, 217 (1998); M.F. El-Sayed, D.K. Callebaut, Physica A 269, 235 (1999)

    Article  ADS  Google Scholar 

  41. D.K. Callebaut, M.F. El-Sayed, Astrophys. Space Sci. 222, 237 (1994); D.K. Callebaut, M.F. El-Sayed, Phys. Lett. A 232, 126 (1997)

    Article  ADS  MATH  Google Scholar 

  42. A.H. Nayfeh, Perturbation Methods (Wiley, New York, 1973)

  43. A.A. Mohamed, E.F. Elshehawey, Arab. J. Sci. Eng. 9, 345 (1984)

    MATH  Google Scholar 

  44. D.-S. Lee, Z. Naturforsch A 54, 335 (1999)

    Google Scholar 

  45. F.H. Berkshire, J.D. Gibbon, Stud. Appl. Math. 69 , 229 (1983)

    MathSciNet  MATH  Google Scholar 

  46. M.J. Landman, G.C. Papanicolaou, C. Sulem, P.-L. Sulrm, Phys. Rev. A 38, 3837 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  47. J.J. Rasmusen, K. Rypdal, Physica Scripta 33, 481 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  48. M. Singh, H.K. Khosla, S.K. Malik, J. Plasma Phys. 59, 27 (1998)

    Article  ADS  Google Scholar 

  49. A.R.F. Elhefnawy, Int. J. Eng. Sci. 30, 1703 (1992)

    Article  MATH  Google Scholar 

  50. H. Demiray, Int. J. Eng. Sci 40, 1897 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  51. A.H. Nayfeh, J. Acoust. Soc. Am. 57, 803 (1975)

    Article  ADS  MATH  Google Scholar 

  52. W.S. Chun, P.D. Yuan, Chin. Phys. Lett. 18, 776 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. El-Sayed.

Additional information

Received: 23 November 2003, Published online: 15 March 2004

PACS:

47.20.-k Hydrodynamic stability - 52.35.Sb Solitons; BGK modes - 42.65.Jx Beam trapping, self-focusing and defocusing; self-phase modulation - 47.65. + a Magnetohydrodynamics and electrohydrodynamics

M.F. El-Sayed: Permanent address: Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Sayed, M.F. Electrohydrodynamic wave-packet collapse and soliton instability for dielectric fluids in (2 + 1)-dimensions. Eur. Phys. J. B 37, 241–255 (2004). https://doi.org/10.1140/epjb/e2004-00052-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00052-x

Keywords

Navigation