Fluctuation conductivity in layered d-wave superconductors near critical disorder



We consider the fluctuation conductivity in the critical region of a disorder induced quantum phase transition in layered d-wave superconductors. We specifically address the fluctuation contribution to the system’s conductivity in the limit of large (quasi-two-dimensional system) and small (quasi-three-dimensional system) separation between adjacent layers of the system. Both in-plane and c-axis conductivities were discussed near the point of insulator-superconductor phase transition. The value of the dynamical critical exponent, z = 2, permits a perturbative treatment of this quantum phase transition under the renormalization group approach. We discuss our results for the system conductivities in the critical region as function of temperature and disorder.


Phase Transition Renormalization Group Critical Region Critical Exponent Quantum Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 1999)Google Scholar
  2. 2.
    H. von Löhneysen, J. Phys.: Condens. Matter 8, 9689 (1996)CrossRefGoogle Scholar
  3. 3.
    Y. Fukuzumi, K. Mizuhashi, K. Takenala, S. Uchida, Phys. Rev. Lett. 76, 684 (1996).CrossRefGoogle Scholar
  4. 4.
    K. Karpinska, M.Z. Cieplak, S. Guha, A. Malinowski, T. Skoskiewicz, W. Plesiewicz, M. Berkowski, B. Boyce, T.R. Lemberger, P. Lindenfeld, Phys. Rev. Lett. 84, 155 (2000)CrossRefGoogle Scholar
  5. 5.
    T. Schneider, Physica B 326, 289 (2003)CrossRefGoogle Scholar
  6. 6.
    T. Schneider, in The Physics of Conventional and Unconventional Superconductors edited by K.H. Bennemann, J.B. Ketterson (Springer-Verlag, Berlin, 2002) (available also at cond-mat/0204236)Google Scholar
  7. 7.
    N. Momono, M. Ido, T. Nakano, M. Oda, Y. Okajima, K. Yamaya, Physica C 233, 395 (1994)CrossRefGoogle Scholar
  8. 8.
    P.W. Anderson, Science 235, 1196 (1987)Google Scholar
  9. 9.
    L.G. Aslamazov, A.I. Larkin, Sov. Phys. Solid State 10, 875 (1968) [Fizika Tvergodo Tela 10, 1104 (1968)]Google Scholar
  10. 10.
    L.B. Ioffe, A.I. Larkin, A.A. Varlamov, L. Yu, Phys. Rev. B 47, 8936 (1993)CrossRefGoogle Scholar
  11. 11.
    D.I. Scalapino, Phys. Rep. 250, 331 (1995)Google Scholar
  12. 12.
    C.C. Tsuei, J.R. Kirtley, Rev. Mod. Phys. 72, 969 (2000)CrossRefGoogle Scholar
  13. 13.
    W.J. Skocpol, M. Tinkham, Rep. Prog. Phys. 38, 1049 (1975)CrossRefGoogle Scholar
  14. 14.
    Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J.G. Bednorz, F. Lichtenberg, Nature 372, 532 (1994)Google Scholar
  15. 15.
    H. Adachi, R. Ikeda, J. Phys. Soc. Jpn 70, 2848 (2001)Google Scholar
  16. 16.
    J.A. Hertz, Phys. Rev. B 48, 7183 (1993)CrossRefGoogle Scholar
  17. 17.
    I.F. Herbut, Phys. Rev. Lett. 85, 1532 (2000).CrossRefGoogle Scholar
  18. 18.
    M. Crisan, D. Bodea, I. Grosu, I. Tifrea, cond-mat/0204210, unpublishedGoogle Scholar
  19. 19.
    D. Dalidovich, P. Phillips, Phys. Rev. Lett. 84, 737 (2000)CrossRefGoogle Scholar
  20. 20.
    Z. Wang, M.P.A. Fisher, S.M. Girvin, J.T. Chalker, Phys. Rev. B 61, 8326 (2000)CrossRefGoogle Scholar
  21. 21.
    D. Dalidovich, P. Phillips, Phys. Rev. B 63, 224503 (2001)CrossRefGoogle Scholar
  22. 22.
    J. Kurkijarvi, V. Ambegaokar, G. Eilenberger, Phys. Rev. B 5, 868 (1972)CrossRefGoogle Scholar
  23. 23.
    A.J. Millis, Phys. Rev. B 48, 7183 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsUniversity of ClujCluj-NapocaRomania
  2. 2.Department of Physics and AstronomyUniversity of IowaIowa CityUSA
  3. 3.Max Plank Institute for the Physics of Complex SystemsDresdenGermany

Personalised recommendations