Advertisement

The complexity of the spherical \(\mathsf{p}\)-spin spin glass model, revisited

Article

Abstract.

Some questions concerning the calculation of the number of “physical” (metastable) states or complexity of the spherical p-spin spin glass model are reviewed and examined further. Particular attention is focused on the general calculation procedure which is discussed step-by-step.

Keywords

Calculation Procedure Spin Glass General Calculation Glass Model Spin Glass Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.H. Stillinger, T.A. Weber, Phys. Rev. A 25, 978 (1982)CrossRefGoogle Scholar
  2. 2.
    A.J. Bray, M.A. Moore, J. Phys. C 13, L469 (1980)Google Scholar
  3. 3.
    C. De Dominicis, A.P. Young, J. Phys. A 16, 2063 (1983)Google Scholar
  4. 4.
    D. Sherrington, S. Kirkpatrick, Phys. Rev. Lett. 35, 1792 (1975)Google Scholar
  5. 5.
    A. Cavagna, I. Giardina, G. Parisi, M. Mezard, J. Phys. A 36, 1175 (2003)MathSciNetGoogle Scholar
  6. 6.
    A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, to be published in Phys. Rev. B 68 (2003)Google Scholar
  7. 7.
    A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, cond-mat/0307543 (2003)Google Scholar
  8. 8.
    A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, cond-mat/0309256 (2003)Google Scholar
  9. 9.
    A. Annibale, A. Cavagna, I. Giardina, G. Parisi, to be published in Phys. Rev. E 68Google Scholar
  10. 10.
    A. Crisanti, H.-J. Sommers, Zeit. für Physik B 87, 341 (1992)Google Scholar
  11. 11.
    A. Crisanti, H.-J. Sommers, J. Phys. I France 5, 805 (1995)Google Scholar
  12. 12.
    A. Cavagna, J.P. Garrahan, I. Giardina, J. Phys. A 32, 711 (1998)MATHGoogle Scholar
  13. 13.
    A. Cavagna, I. Giardina, G. Parisi, Phys. Rev. B 57, 11251 (1998)Google Scholar
  14. 14.
    D.J. Thouless, P.W. Anderson, R.G. Palmer, Phil. Mag. 35, 593 (1977)Google Scholar
  15. 15.
    T. Plefka, J. Phys. A 15, 1971 (1982)MathSciNetGoogle Scholar
  16. 16.
    T. Plefka, Europhys. Lett. 58, 892 (2002)Google Scholar
  17. 17.
    A. Crisanti, L. Leuzzi, T. Rizzo, unpublished (2003)Google Scholar
  18. 18.
    A. Crisanti, H. Horner, H.-J. Sommers, Zeit. für Physik B 92, 257 (1993)Google Scholar
  19. 19.
    J. Kurchan, G. Parisi, M.A. Virasoro, J. Phys. I France 3, 1819 (1993)Google Scholar
  20. 20.
    H. Rieger, Phys. Rev. B 46, 14665 (1992)Google Scholar
  21. 21.
    A.J. Bray, M.A. Moore, J. Phys. A 14, L377 (1981)Google Scholar
  22. 22.
    Not to be confused with the angular part of m i used in Section 3. We leave it like this because it is the standard notation in literatureGoogle Scholar
  23. 23.
    Usually this function is written as \(G_{x_{\rm P}} = -B (1-q) + B^2/\lambda + \ln[1/(1-q)+B]\). The two expressions correspond to B = 0 and \(B\not=0\), respectivelyGoogle Scholar
  24. 24.
    All integrals are well defined and no extra conditions must be addedGoogle Scholar
  25. 25.
    The coefficient in (30) contains the term \(|\partial_q f(q)|_{q=q^*}|\), where \(f(q)\) is the value of the TAP functional at its stationary point and not the TAP functional itself. A simple calculation shows that \(\partial_q f(q)= -(q- q_{\rm a})\,x_{\rm P}(q)/2\beta(1-q)^2\) which is vanishes only for \(q=q_{\rm a} {\mathrm or} x_{\rm P}=0\) Google Scholar
  26. 26.
    M.L. Mehta, Random Matrices and the Statistical Theory of Energy Levels (Academic, New York, 1967)Google Scholar
  27. 27.
    J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Clarendon Press, Oxford, 1989)Google Scholar
  28. 28.
    J. Kurchan, J. Phys. A 24, 4969 (1991)CrossRefMathSciNetGoogle Scholar
  29. 29.
    T. Aspelmeier, A. Bray, M. Moore, e-print cond-mat/0309113 (2003)Google Scholar
  30. 30.
    By setting \(ix=-B\) one recovers the standard expression in terms of the variable B. We prefer to use x since in this way the integral is over the real axisGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.Dipartimento di FisicaUniversitá di Roma “La Sapienza”, Istituto Nazionale Fisica della Materia, Unitá di Roma, and SMCRomaItaly

Personalised recommendations