Turbulent thermal convection in a closed domain: viscous boundary layer and mean flow effects



In this paper the effects of viscous boundary layers and mean flow structures on the heat transfer of a flow in a slender cylindrical cell are analysed using the direct numerical simulation of the Navier-Stokes equations with the Boussinesq approximation. Ideal flows are produced by suppressing the viscous boundary layers and by artificially enforcing the flow axisymmetry with the aim of checking some proposed explanations for the Nusselt number dependence on the Rayleigh number. The emerging picture suggests that, in this slender geometry,the presence of the viscous boundary layers does not have appreciable impact on the slope of the Nu vs. Ra relation while a transition of the mean flow is most likely the reason for the slope increase observed around Ra=2 x 109.


Heat Transfer Convection Nusselt Number Rayleigh Number Flow Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Ahlers , Phys. Rev. E 63, 015303 (2001)CrossRefGoogle Scholar
  2. 2.
    P.E. Roche, B. Castaing, B. Chabaud, B. Hebral, J. Sommeria, Eur. Phys. J. B 24, 405 (2001)CrossRefGoogle Scholar
  3. 3.
    J.J. Niemela, K.R. Sreenivasan, J. Fluid Mech. 481, 355 (2003)CrossRefGoogle Scholar
  4. 4.
    R. Verzicco, J. Fluid Mech. 473, 201 (2002)CrossRefMATHGoogle Scholar
  5. 5.
    S. Chaumat, B. Castaing, F. Chillá, Rayleigh-Bénard cells: influence of the plate properties Advances in Turbulence IX, edited by I.P. Castro, P.E. Hancock, id:46,1 (CIMNE, Barcellona 2002)Google Scholar
  6. 6.
    B. Castaing, G. Gunaratne, F. Heslot, L. Kadanoff., A. Libchaber, S. Thomae, X.Z. Wu, S. Zaleski, G. Zanetti, J. Fluid Mech. 204, 1 (1989)Google Scholar
  7. 7.
    B.I. Shraiman, E.D. Siggia, Phys. Rev. A 42, 3650 (1990)CrossRefGoogle Scholar
  8. 8.
    X. Chavanne, F. Chillá, B. Castaing, B. Hébral, B. Chabaud, J. Chaussy, Phys. Rev. Lett. 79, 3648 (1997)CrossRefGoogle Scholar
  9. 9.
    X. Chavanne, F. Chillá, B. Chabaud, B. Castaing, B. Hebral, Phys. Fluids 13, 1300 (2001)Google Scholar
  10. 10.
    P.E. Roche, B. Castaing, B. Chabaud, B. Hebral, Europhys. Lett. E 58, 693 (2002)Google Scholar
  11. 11.
    R. H. Kraichnan, Phys. Fluids 5, 1374 (1962)Google Scholar
  12. 12.
    S. Grossmann, D. Lohse, J. Fluid Mech. 407, 27 (2000)MATHGoogle Scholar
  13. 13.
    S. Grossmann, D. Lohse Phys. Rev. Lett. 86, 3316 (2001)Google Scholar
  14. 14.
    R. Verzicco, R. Camussi, J. Fluid Mech. 477, 19 (2003)Google Scholar
  15. 15.
    X.Z. Wu, Along a Road to Developed Turbulence: Free Thermal Convection in Low Temperature Helium Gas, Ph.D. thesis, University of Chicago (1991)Google Scholar
  16. 16.
    J.J. Niemela, L. Skrbek., R.R. Sreenivasan, R.J. Donnely, Nature 404, 837 (2000)CrossRefPubMedGoogle Scholar
  17. 17.
    P.E. Roche, B. Castaing, B. Chabaud, B. Hebral, Phys. Rev. E 63, 045303-1-045303-4 (2001b)Google Scholar
  18. 18.
    G. Grötzbach, J. Comput. Phys. 49, 241 (1983)Google Scholar
  19. 19.
    G. Ahlers, X. Xu, Phys. Rev. Lett. 86, 3320 (2001)Google Scholar
  20. 20.
    K.Q. Xia, S. Lam, S.Q. Zhou, Phys. Rev. Lett. 88(6), 064501-1-4 (2002)Google Scholar
  21. 21.
    S. Grossmann, D. Lohse, Phys. Rev. E 66, 016305-1 - 016305-6 (2002)Google Scholar
  22. 22.
    T.H. Solomon, J.P. Gollub, Phys. Rev. Lett. 64, 2382 (1990)Google Scholar
  23. 23.
    T.H. Solomon, J.P. Gollub, Phys. Rev. A 43, 6683 (1991)Google Scholar
  24. 24.
    S. Ciliberto, S. Cioni, C. Laroche, Phys. Rev. E 54, 5901 (1996)Google Scholar
  25. 25.
    A. Umeura, F. Busse J. Fluid Mech. 208, 459 (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.DIMeG and CEMeCPolitecnico di BariBariItalia

Personalised recommendations