Fractal geometry of critical Potts clusters

  • J. Asikainen
  • A. Aharony
  • B. B. Mandelbrot
  • E. Rausch
  • J.-P. Hovi
Original Paper


Numerical simulations on the total mass, the numbers of bonds on the hull, external perimeter, singly connected bonds and gates into large fjords of the Fortuin-Kasteleyn clusters for two-dimensional q-state Potts models at criticality are presented. The data are found consistent with the recently derived corrections-to-scaling theory. A new method for thermalization of spin systems is presented. The method allows a speed up of an order of magnetization for large lattices. We also show snapshots of the Potts clusters for different values of q, which clearly illustrate the fact that the clusters become more compact as q increases, and that this affects the fractal dimensions in a monotonic way. However, the approach to the asymptotic region is slow, and the present range of the data does not allow a unique identification of the exact correction exponents.


Hull Fractal Dimension Total Mass Potts Model Spin System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F.Y. Wu, Rev. Mod. Phys. 54, 235 (1982)CrossRefMathSciNetGoogle Scholar
  2. 2.
    R.B. Potts, Proc. Camb. Phil. Soc. 48, 106 (1952)MathSciNetMATHGoogle Scholar
  3. 3.
    C.M. Fortuin, P.W. Kasteleyn, Physica (Utrecht) 57, 536 (1972)CrossRefGoogle Scholar
  4. 4.
    R. Swendsen, J. Wang, Phys. Rev. Lett. 58, 86 (1987)CrossRefGoogle Scholar
  5. 5.
    U. Wolf, Phys. Rev. Lett. 62, 361 (1989)CrossRefGoogle Scholar
  6. 6.
    E. Ising, Z. Phys. 21, 613 (1925)Google Scholar
  7. 7.
    S. Alexander, Phys. Lett. A 54, 353 (1975)CrossRefGoogle Scholar
  8. 8.
    M. Bretz, Phys. Rev. Lett. 38, 501 (1977)CrossRefGoogle Scholar
  9. 9.
    E. Domany, M. Schick, J.S. Walker, Phys. Rev. Lett. 38, 1148 (1977)CrossRefGoogle Scholar
  10. 10.
    D. Stauffer, A. Aharony, Introduction to Percolation Theory, revised 2nd edition ed. (Taylor and Francis, Burgess Science Press, Basingstoke, London, 1994)Google Scholar
  11. 11.
    A. Coniglio, J. Phys. A 15, 3829 (1982)CrossRefMathSciNetGoogle Scholar
  12. 12.
    A. Coniglio, Phys. Rev. Lett. 46, 250 (1981)CrossRefGoogle Scholar
  13. 13.
    R. Pike, H.E. Stanley, J. Phys. A 14, L169 (1981)Google Scholar
  14. 14.
    B.B. Mandelbrot, The Fractal Geometry of Nature (W.H. Freedman and Company, New York, 1977)Google Scholar
  15. 15.
    R.F. Voss, J. Phys. A 17, L373 (1984)Google Scholar
  16. 16.
    A. Bunde, J.F. Gouyet, J. Phys. A 18, L285 (1985)Google Scholar
  17. 17.
    T. Grossman, A. Aharony, J. Phys. A 19, L745 (1986)Google Scholar
  18. 18.
    M. Aizenman, B. Duplantier, A. Aharony, Phys. Rev. Lett. 83, 1359 (1999)CrossRefGoogle Scholar
  19. 19.
    H. Saleur, B. Duplantier, Phys. Rev. Lett. 58, 2325 (1987)CrossRefMathSciNetGoogle Scholar
  20. 20.
    B. Duplantier, Phys. Rev. Lett. 84, 1363 (2000)CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    A. Aharony, J. Asikainen, in Scaling and Disordered Systems, edited by F. Family, M. Daoud, H.J. Herrmann, H.E. Stanley (World Scientific, Singapore, 2002)Google Scholar
  22. 22.
    N. Metropolis , J. Chem. Phys 21, 1087 (1953)Google Scholar
  23. 23.
    J.L. Cardy, M. Nauenberg, D.J. Scalapino, Phys. Rev. B 22, 2560 (1980)CrossRefMathSciNetGoogle Scholar
  24. 24.
    C. Vanderzande, J.F. Marko, J. Phys. A 26, 7391 (1993)MathSciNetGoogle Scholar
  25. 25.
    A. Aharony, G. Ahlers, Phys. Rev. Lett. 44, 782 (1980)CrossRefGoogle Scholar
  26. 26.
    M.P.M. den Nijs, Phys. Rev. B 27, 1674 (1983)CrossRefGoogle Scholar
  27. 27.
    Y. Gefen, B.B. Mandelbrot, A. Aharony, A. Kapitulnik, J. Stat. Phys. 36, 827 (1984)MathSciNetGoogle Scholar
  28. 28.
    M.E.J. Newman, R.M. Ziff, Phys. Rev. Lett. 85, 4104 (2000)CrossRefGoogle Scholar
  29. 29.
    J. Hoshen, R. Kopelman, Phys. Rev. B 14, 3438 (1976)Google Scholar
  30. 30.
    W.H. Press, S.A. Teukolsky, W.T.V.B.P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge University Press, Great Britain, Cambridge, 1992)Google Scholar
  31. 31.
    A. Coniglio, Phys. Rev. Lett. 62, 3054 (1989)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  • J. Asikainen
    • 1
  • A. Aharony
    • 2
  • B. B. Mandelbrot
    • 3
  • E. Rausch
    • 3
  • J.-P. Hovi
    • 2
    • 3
  1. 1.Helsinki Institute of Physics and Laboratory of PhysicsHelsinki University of TechnologyFinland
  2. 2.Raymond and Beverly Sackler Faculty of Exact SciencesSchool of Physics and Astronomy Tel Aviv UniversityTel AvivIsrael
  3. 3.Department of MathematicsYale UniversityNew HavenUSA

Personalised recommendations