Skip to main content
Log in

Self-similar analytical solutions for blast waves in inhomogeneous atmospheres with frozen-in-magnetic field

  • Original Paper
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

In the present paper, we have made an attempt to study the effects of the presence of a magnetic field on the cavity formation inside a blast wave propagating into a perfectly conducting gas with density varying as some power of distance from the plane or line of explosion. In order to obtain the closed form solutions for the flow variables inside the blast wave and to solve the problem of cavity formation analytically, a relation is taken between the ordinary pressure and the total pressure. It i s found that if the value of the inhomogeneity index \(\alpha\) is greater than a critical value \(\alpha_c\) (a function of MA - Alfven Mach Number, \(\gamma\) - adiabatic index and i - wave geometry index), a contact discontinuity appears at some point inside the blast wave and the cavity formation occurs. The effect of the presence of magnetic field is found to increase the tendency of cavity formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.I. Taylor, Proc. Roy. Soc. 201, 143 (1950)

    Google Scholar 

  2. L.I. Sedov, Similarity and Dimensional methods in mechanics (Acad. Press, New York, 1959), p. 166

  3. A. Sakurai, Blast Wave Theory an article in the book Basic Developments in Fluid Dynamics, edited by M. Holt (Acad. Press, New York, 1965), p. 309

  4. J.H. Lee, R. Knystautas, C.G. Bach, Theory of Explosions (McGill Univ., MERL, 1969), p. 69

  5. V P. Korobeinikov, Ann. Rev. Fluid Mech. 3, 317 (1971)

    Article  Google Scholar 

  6. M.H. Rogers, Astrophys. J. 125, 478 (1957)

    Article  MathSciNet  Google Scholar 

  7. C.G. Bach, J.H.S. Lee, AIAAJ. 8, 271 (1970)

    Google Scholar 

  8. D.D. Laumbach, R.F. Probstein, J. Fluid Mech. 40, 833 (1969)

    Google Scholar 

  9. P.L. Sachdev, J. Fluid Mech. 52, 369 (1972)

    MATH  Google Scholar 

  10. S.R. Brinkley, J.G. Kirkwood, Phys. Rev. 71, 606 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  11. T.S. Lee, T. Chen, Planet. Space Sci. 16, 1483 (1968)

    Article  Google Scholar 

  12. D. Summers, Astron. Astrophys. 45, 151 (1975)

    Google Scholar 

  13. K. Nagayama, Appl. Phys. Lett. 38, 109 (1981)

    Article  Google Scholar 

  14. A.H. Christer, J.B. Helliwell, J. Fluid Mech. 39, 705 (1969)

    MATH  Google Scholar 

  15. S.I. Pai, Proc. IV Congr. Theo. Appl. Mech. 89 (1958)

  16. J.D. Cole, C. Greifinger, Phys. Fluids 5, 1597 (1962)

    MATH  Google Scholar 

  17. G.D. Ray, Phys. Fluids 16, 559 1973

    Google Scholar 

  18. B.G. Verma, J.P. Vishwakarma, V. Sharan, Astrophys. Space Sci. 81, 315 (1982)

    MATH  Google Scholar 

  19. J.B. Singh, P.S. Singh, Nuovo Cimento D 17, 335 (1995)

    MATH  Google Scholar 

  20. G.S. Golitsyn, Soviet Phys. JETP. 35, 538 (1959)

    MATH  Google Scholar 

  21. S.N. Ojha, O. Nath, H.S. Takhar, J. MHD and Plasma Res. 1, 1 (1998)

    Google Scholar 

  22. T.G. Cowling, Magnetohydrodynamics (Interscience Publishers Ltd., 1957), p. 6

  23. B.G. Verma, J.P. Vishwakarm, Nuovo Cimento 328, 267 (1976)

    Google Scholar 

  24. G.B. Whitham, J. Fluid Mech. 4, 337 (1958)

    MATH  Google Scholar 

  25. B.G. Verma, J.P. Vishwakarma, Ann. Soc. Sci. Brux.T90 (III), 337 (1976)

  26. P. Rosenau, F. Frankenthal, Phys. Fluids 19, 1889 (1976)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Vishwakarma.

Additional information

Received: 21 February 2003, Published online: 4 August 2003

PACS:

47.40.-x Compressible flows; shock and detonation phenomena - 47.65.+a Magnetohydrodynamics and electrohydrodynamics

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vishwakarma, J.P., Yadav, A.K. Self-similar analytical solutions for blast waves in inhomogeneous atmospheres with frozen-in-magnetic field. Eur. Phys. J. B 34, 247–253 (2003). https://doi.org/10.1140/epjb/e2003-00218-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2003-00218-0

Keywords

Navigation