Advertisement

Self-similar analytical solutions for blast waves in inhomogeneous atmospheres with frozen-in-magnetic field

Original Paper

Abstract.

In the present paper, we have made an attempt to study the effects of the presence of a magnetic field on the cavity formation inside a blast wave propagating into a perfectly conducting gas with density varying as some power of distance from the plane or line of explosion. In order to obtain the closed form solutions for the flow variables inside the blast wave and to solve the problem of cavity formation analytically, a relation is taken between the ordinary pressure and the total pressure. It i s found that if the value of the inhomogeneity index \(\alpha\) is greater than a critical value \(\alpha_c\) (a function of MA - Alfven Mach Number, \(\gamma\) - adiabatic index and i - wave geometry index), a contact discontinuity appears at some point inside the blast wave and the cavity formation occurs. The effect of the presence of magnetic field is found to increase the tendency of cavity formation.

Keywords

Atmosphere Magnetic Field Mach Number Closed Form Total Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.I. Taylor, Proc. Roy. Soc. 201, 143 (1950)Google Scholar
  2. 2.
    L.I. Sedov, Similarity and Dimensional methods in mechanics (Acad. Press, New York, 1959), p. 166Google Scholar
  3. 3.
    A. Sakurai, Blast Wave Theory an article in the book Basic Developments in Fluid Dynamics, edited by M. Holt (Acad. Press, New York, 1965), p. 309Google Scholar
  4. 4.
    J.H. Lee, R. Knystautas, C.G. Bach, Theory of Explosions (McGill Univ., MERL, 1969), p. 69Google Scholar
  5. 5.
    V P. Korobeinikov, Ann. Rev. Fluid Mech. 3, 317 (1971)CrossRefGoogle Scholar
  6. 6.
    M.H. Rogers, Astrophys. J. 125, 478 (1957)CrossRefMathSciNetGoogle Scholar
  7. 7.
    C.G. Bach, J.H.S. Lee, AIAAJ. 8, 271 (1970)Google Scholar
  8. 8.
    D.D. Laumbach, R.F. Probstein, J. Fluid Mech. 40, 833 (1969)Google Scholar
  9. 9.
    P.L. Sachdev, J. Fluid Mech. 52, 369 (1972)MATHGoogle Scholar
  10. 10.
    S.R. Brinkley, J.G. Kirkwood, Phys. Rev. 71, 606 (1947)CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    T.S. Lee, T. Chen, Planet. Space Sci. 16, 1483 (1968)CrossRefGoogle Scholar
  12. 12.
    D. Summers, Astron. Astrophys. 45, 151 (1975)Google Scholar
  13. 13.
    K. Nagayama, Appl. Phys. Lett. 38, 109 (1981)CrossRefGoogle Scholar
  14. 14.
    A.H. Christer, J.B. Helliwell, J. Fluid Mech. 39, 705 (1969)MATHGoogle Scholar
  15. 15.
    S.I. Pai, Proc. IV Congr. Theo. Appl. Mech. 89 (1958)Google Scholar
  16. 16.
    J.D. Cole, C. Greifinger, Phys. Fluids 5, 1597 (1962)MATHGoogle Scholar
  17. 17.
    G.D. Ray, Phys. Fluids 16, 559 1973Google Scholar
  18. 18.
    B.G. Verma, J.P. Vishwakarma, V. Sharan, Astrophys. Space Sci. 81, 315 (1982)MATHGoogle Scholar
  19. 19.
    J.B. Singh, P.S. Singh, Nuovo Cimento D 17, 335 (1995)MATHGoogle Scholar
  20. 20.
    G.S. Golitsyn, Soviet Phys. JETP. 35, 538 (1959)MATHGoogle Scholar
  21. 21.
    S.N. Ojha, O. Nath, H.S. Takhar, J. MHD and Plasma Res. 1, 1 (1998)Google Scholar
  22. 22.
    T.G. Cowling, Magnetohydrodynamics (Interscience Publishers Ltd., 1957), p. 6Google Scholar
  23. 23.
    B.G. Verma, J.P. Vishwakarm, Nuovo Cimento 328, 267 (1976)Google Scholar
  24. 24.
    G.B. Whitham, J. Fluid Mech. 4, 337 (1958)MATHGoogle Scholar
  25. 25.
    B.G. Verma, J.P. Vishwakarma, Ann. Soc. Sci. Brux.T90 (III), 337 (1976)Google Scholar
  26. 26.
    P. Rosenau, F. Frankenthal, Phys. Fluids 19, 1889 (1976)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.Department of Mathematics and Statistics D.D.U.Gorakhpur UniversityGorakhpurIndia

Personalised recommendations