Boundary and particle number effects on the thermodynamic properties of trapped ideal Bose gases

Original Paper


The ideal noninteracting Bose gases trapped in a generic power-law potential in an any-dimensional space are studied. We present theoretical results of the corrections of thermodynamic properties due to finite particle number effects. The calculation uses the Euler-Maclaurin approximation to simplify the condensate fraction, and it also uses the Maslov index to discuss the boundary effect. Recently BEC (Bose-Einstein Condensation) has also been observed in a microelectronic chip; therefore, with a similar microstructure, we can obtain the effects of a rigid wall in a trap that have never been found before.


Microstructure Theoretical Result Thermodynamic Property Particle Number Boundary Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Einstein, Sitzungsber. Preuss. Akad. Wiss. 1, 3 (1925)Google Scholar
  2. 2.
    M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269, 198 (1995)Google Scholar
  3. 3.
    C.C. Bradley, C.A. Sackett, J.J. Tollet, R.G. Hulet, Phys. Rev. Lett. 75, 1687 (1995)CrossRefGoogle Scholar
  4. 4.
    K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995)CrossRefGoogle Scholar
  5. 5.
    Kerson Huang 1987, Statistical Mechanics, 2nd edn. (John Wiley and Sons, New York)Google Scholar
  6. 6.
    S.R. de Groot, G.J. Hooman, C.A. Ten Seldam, Proc. R. Soc. London, Ser. A 56, 587 (1950)Google Scholar
  7. 7.
    S. Grossmann, M. Holthaus, Phys. Lett. A 208, 188 (1995)CrossRefGoogle Scholar
  8. 8.
    V. Bagnato, D.E. Pritchard, D. Kleppner, Phys. Rev. A 35, 4354 (1987)Google Scholar
  9. 9.
    R.K. Pathria, Phys. Rev. A 58, 1490 (1998)CrossRefGoogle Scholar
  10. 10.
    W.F. Kao, P.G. Luan, D.H. Lin, Phys. Rev. A 65, 052108 (2002)CrossRefGoogle Scholar
  11. 11.
    T. Haugset, H. Haugerud, J.O. Andersen, Phys. Rev. A 55, 2922 (1997)CrossRefGoogle Scholar
  12. 12.
    G. Arfken, Mathematical Methods for Physicists, 3d edn. (Oxford, Ohio, 1985)Google Scholar
  13. 13.
    M. Li, L. Chen, C. Chen, Phys. Rev. A 59, 3109 (1999)CrossRefGoogle Scholar
  14. 14.
    M. Li, L. Chen, C. Chen, Phys. Rev. A 60, 4168 (1999)CrossRefGoogle Scholar
  15. 15.
    R.K. Pathria, Phys. Rev. A 5, 1451 (1972)CrossRefGoogle Scholar
  16. 16.
    W. Hansel, P. Hommelhoff, T.W. Hansch, J. Reichel, Nature 413, 498 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  • Yee-Mou Kao
    • 1
  • D. H. Lin
    • 1
  • Pin Han
    • 2
  • Pi-Gang Luan
    • 3
  1. 1.National Center for High-Performance Computing, No. 21TaiwanRepublic of China
  2. 2.Department of Electrical EngineeringDa Yeh UniversityTaiwanRepublic of China
  3. 3.Institute of Optical SciencesNational Central UniversityTaiwanRepublic of China

Personalised recommendations