Beyond darmstadtium --Status and perspectives of superheavy element research

  • D. Ackermann
ENAM 2004


The search for superheavy elements has yielded exciting results for both the “cold fusion” approach with reactions employing Pb and Bi targets and the “hot fusion” reactions with 48Ca beams on actinide targets. In recent years the accelerator laboratories in Berkeley, Dubna and Darmstadt have been joined by new players in the game in France with GANIL, Caen, and in Japan with RIKEN, Tokyo. The latter yielding very encouraging results for the reactions on Pb/Bi targets which confirmed the data obtained at GSI. Beyond the successful synthesis, interesting features of the structure of the very heavy nuclei like the hint for a possible K-isomer in 270Ds or the population of states at a spin of up to 22ℏ in 254No give a flavor of the exciting physics we can expect in the region at the very extreme upper right of the nuclear chart. To get a hand on it, a considerable increase in sensitivity is demanded from future experimental set-ups. High intensity stable beam accelerators, mass measurement in ion traps and mass spectrometers, as well as the possible employment of unstable neutron-rich projectile species, initially certainly only for systematic studies of reaction mechanism and nuclear structure features for lighter exotic neutron-rich isotopes, are some of the technological challenges which have been taken on.


24.75.+i General properties of fission 25.70.Gh Compound nucleus 25.70.Jj Fusion and fusion-fission reactions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu.Ts. Oganessian, V.K. Utyonkov, Phys. Rev. C 69, 054607 (2004) and these proceedings.CrossRefGoogle Scholar
  2. 2.
    S. Hofmann, G. Münzenberg, Rev. Mod. Phys. 72, 733 (2000). CrossRefGoogle Scholar
  3. 3.
    S. Hofmann, J. Nucl. Rad. Chem. Sci. 4, R1 (2003).Google Scholar
  4. 4.
    Ch.E. Düllmann, Nature 418, 859 (2002).CrossRefPubMedGoogle Scholar
  5. 5.
    K. Morita, private communication.Google Scholar
  6. 6.
    S. Hofmann, in Proceedings of the VIII International Conference on Nucleus-Nucleus Collisions (NN2003), Moscow, Russia, 17-21 June, 2003, edited by Yu.Ts. Oganessian, R. Kalpakchieva, Nucl. Phys. A 734, 93 (2004).CrossRefGoogle Scholar
  7. 7.
    F.P. Heßberger, S. Hofmann, D. Ackermann, Eur. Phys. J. A 16, 365 (2003).Google Scholar
  8. 8.
    F.P. Heßberger, Eur. Phys. J. A 3, 521 (2000).CrossRefGoogle Scholar
  9. 9.
    F.P. Heßberger, Eur. Phys. J. A 12, 57 (2001).CrossRefGoogle Scholar
  10. 10.
    S. Hofmann, Eur. Phys. J. A 10, 5 (2001).CrossRefGoogle Scholar
  11. 11.
    S. Cwiok, W. Nazarewicz, P.H. Heenen, Phys. Rev. Lett. 83, 1108 (1999) and private communication.CrossRefGoogle Scholar
  12. 12.
    F.R. Xu, Phys. Rev. Lett. 25, 252501 (2004).CrossRefGoogle Scholar
  13. 13.
    C.M. Folden, TASCA04 Workshop, August 27th 2004 (GSI, and private communication.Google Scholar
  14. 14.
    C.M. Folden, Phys. Rev. Lett. 93, 212702 (2004).CrossRefPubMedGoogle Scholar
  15. 15.
    Ch. Stodel, to be published in Proceedings of the Conference EXON2004, St. Petersburg, Russia, June 2004 (World Scientific, 2005)Google Scholar
  16. 16.
    K. Morita, Nucl. Phys. A 734, 101 (2004).CrossRefGoogle Scholar
  17. 17.
    K. Morita, J. Phys. Soc. Jpn. 73, 2593 (2004).CrossRefGoogle Scholar
  18. 18.
    P. Cagarda, PhD Thesis, University Bratislava (2002).Google Scholar
  19. 19.
    M. Block, these proceedings.Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2005

Authors and Affiliations

  1. 1.Gesellschaft für Schwerionenforschung GSIDarmstadtGermany
  2. 2.Johannes Gutenberg-Universität MainzGermany

Personalised recommendations