Confirmation of Giant Pairing Vibration evidence in \(^{\mathrm {12,13}}\)C(\(^{\mathrm {18}}\)O,\(^{\mathrm {16}}\)O)\(^{\mathrm {14,15}}\)C reactions at 275 MeV

Abstract

The Giant Pairing Vibration (GPV) is a correlated two-nucleon excitation mode in atomic nuclei predicted long time ago. It is expected to be excited in two-nucleon transfer reactions, similarly to the pairing vibrations feeding the ground states of even-even nuclei near shell-closure. Recent experiments have provided evidence for this mode in \(^{\mathrm {14}}\)C and \(^{\mathrm {15}}\)C nuclei populated via \(^{\mathrm {12}}\)C,\(^{\mathrm {13}}\)C(\(^{\mathrm {18}}\)O,\(^{\mathrm {16}}\)O)\(^{\mathrm {14}}\)C,\(^{\mathrm {15}}\)C two-neutron transfer reactions at 84 MeV beam energy. In the present paper, new data show the persistence of the same structures in the energy spectra of \(^{\mathrm {14}}\)C and \(^{\mathrm {15}}\)C populated by the same reactions at a higher bombarding energy of 275 MeV. The extracted centroid, width, spin-parity and transition probability fully agree with the previous observation thus giving a robust confirmation that the GPV mode is populated in such transfer reactions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon reasonable request by contacting the corresponding author.]

References

  1. 1.

    M.N. Harakeh, A. van der Woude, Giant resonances (Oxford University Press, Oxford, 2001)

    Google Scholar 

  2. 2.

    R.A. Broglia, D.R. Bès, Phys. Lett. B 69, 129 (1977)

    ADS  Article  Google Scholar 

  3. 3.

    A. Bohr, B. Mottelson, Nuclear structure, vol. II (World Scientific, Singapore, 1998)

    Google Scholar 

  4. 4.

    D.R. Bès, R. Broglia, Nucl. Phys. 80, 289 (1966)

    Article  Google Scholar 

  5. 5.

    R.A. Broglia, O. Hansen, C. Riedel, Adv. Nucl. Phys. 6, 287 (1973)

    Article  Google Scholar 

  6. 6.

    F. Cappuzzello et al., Nat. Commun. 6, 6743 (2015)

    ADS  Article  Google Scholar 

  7. 7.

    D. Carbone, Eur. Phys. J. Plus 130, 143 (2015)

    Article  Google Scholar 

  8. 8.

    M. Cavallaro et al., Phys. Rev. C 93, 064323 (2016)

    ADS  Article  Google Scholar 

  9. 9.

    S. Kahana, A.J. Baltz, in Advances, in Nuclear Physics, vol. 9, ed. by M. Baranger, E. Vogt (Plenum Press, New York, 1977), pp. 1–122

  10. 10.

    M. Cavallaro et al., Phys. Rev. C 88, 054601 (2013)

    ADS  Article  Google Scholar 

  11. 11.

    D. Carbone et al., Phys. Rev. C 95, 034603 (2017)

    ADS  Article  Google Scholar 

  12. 12.

    R.A. Broglia, A. Winther, Heavy ion reactions, vol. I (Addison-Wesley Publishing Company, Boston, 1991)

    Google Scholar 

  13. 13.

    W. von Oertzen, A. Vitturi, Rep. Prog. Phys. 64, 1247–1337 (2001)

    ADS  Article  Google Scholar 

  14. 14.

    M. Cavallaro et al., Eur. Phys. J. A 55, 244 (2019)

    ADS  Article  Google Scholar 

  15. 15.

    L. Fortunato et al., Eur. Phys. J. A 14, 37 (2002)

    ADS  Google Scholar 

  16. 16.

    L. Fortunato, Phys. At. Nucl. 66, 1445 (2003)

    Article  Google Scholar 

  17. 17.

    C.H. Dasso et al., J. Phys. Conf. Ser. 580, 012018 (2015)

    Article  Google Scholar 

  18. 18.

    D.M. Brink, R.A. Broglia, Nuclear superfluidity: pairing in finite systems (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  19. 19.

    M. Assié et al., Eur. Phys. J. A 55, 245 (2019)

    ADS  Article  Google Scholar 

  20. 20.

    B. Mouginot et al., Phys. Rev. C 83, 037302 (2011)

    ADS  Article  Google Scholar 

  21. 21.

    M. De Napoli et al., Acta Phys. Pol. B 45, 437 (2014)

    ADS  Article  Google Scholar 

  22. 22.

    G.M. Crawley et al., Phys. Rev. Lett. 39, 1451 (1977)

    ADS  Article  Google Scholar 

  23. 23.

    D.M. Brink, Phys. Lett. B 40, 37 (1972)

    ADS  Article  Google Scholar 

  24. 24.

    E. Khan et al., Phys. Rev. C 69, 014314 (2004)

    ADS  Article  Google Scholar 

  25. 25.

    E. Khan et al., Phys. Rev. C 80, 044328 (2009)

    ADS  Article  Google Scholar 

  26. 26.

    B. Avez et al., Phys. Rev. C 78, 044318 (2008)

    ADS  Article  Google Scholar 

  27. 27.

    P.F. Bortignon, R.A. Broglia, Eur. Phys. J. A 52, 280 (2016)

    ADS  Article  Google Scholar 

  28. 28.

    M. Laskin et al., Phys. Rev. C 93, 034321 (2016)

    ADS  Article  Google Scholar 

  29. 29.

    G.G. Dussel, R.Id Betan, R.J. Liotta, T. Vertse, Phys. Rev. C 80, 064311 (2009)

    ADS  Article  Google Scholar 

  30. 30.

    F. Cappuzzello et al., Eur. Phys. J. A 52, 167 (2016)

    ADS  Article  Google Scholar 

  31. 31.

    M. Cavallaro et al., Eur. Phys. J. A 48, 59 (2012)

    ADS  Article  Google Scholar 

  32. 32.

    D. Torresi et al., Nucl. Instr. Meth. A 989, 164918 (2021)

    Article  Google Scholar 

  33. 33.

    F. Cappuzzello et al., Nucl. Instr. Methods A 621, 419 (2010)

    ADS  Article  Google Scholar 

  34. 34.

    S. Calabrese et al., Nucl. Inst. Meth. A 980, 164500 (2020)

    Article  Google Scholar 

  35. 35.

    F. Cappuzzello et al., Nucl. Instr. Methods A 638, 74 (2011)

    ADS  Article  Google Scholar 

  36. 36.

    M. Cavallaro et al., Nucl. Instr. Meth. A 637, 77 (2011)

    ADS  Article  Google Scholar 

  37. 37.

    F. Ajzenberg-Selove, Nucl. Phys. A 523, 1 (1991)

    ADS  Article  Google Scholar 

  38. 38.

    S. Orrigo et al., Phys. Lett. B 633, 469 (2006)

    ADS  Article  Google Scholar 

  39. 39.

    M. Cavallaro et al., J. Phys. Conf. Ser. 515, 012003 (2014)

    Article  Google Scholar 

  40. 40.

    G.R. Satchler, Direct nuclear reactions (Oxford University Press, Oxford, 1983)

    Google Scholar 

  41. 41.

    I.J. Thompson, Coupled reaction channels calculations in nuclear physics. Comput. Phys. Rep. 7, 167 (1988)

    ADS  Google Scholar 

  42. 42.

    M.J. Ermamatov et al., Phys. Rev. C 94, 024610 (2016)

    ADS  Article  Google Scholar 

  43. 43.

    B. Paes et al., Phys. Rev. C 96, 044612 (2017)

    ADS  Article  Google Scholar 

  44. 44.

    E.N. Cardozo et al., Phys. Rev. C 97, 064611 (2018)

    ADS  Article  Google Scholar 

  45. 45.

    L.C. Chamon et al., Phys. Rev. Lett. 79, 5218 (1997)

    ADS  Article  Google Scholar 

  46. 46.

    L.C. Chamon et al., Phys. Rev. C 66, 014610 (2002)

    ADS  Article  Google Scholar 

  47. 47.

    D. Pereira et al., Phys. Lett. B 670, 330 (2009)

    ADS  Article  Google Scholar 

  48. 48.

    M.A.G. Alvarez et al., Nucl. Phys. A 723, 93–103 (2003)

    ADS  Article  Google Scholar 

  49. 49.

    M.J. Ermamatov et al., Phys. Rev. C 96, 044603 (2017)

    ADS  Article  Google Scholar 

  50. 50.

    U. Umbelino et al., Phys. Rev C 99, 064617 (2019)

    ADS  Article  Google Scholar 

  51. 51.

    D. Carbone et al., Phys. Rev. C 102, 044606 (2020)

    ADS  Article  Google Scholar 

  52. 52.

    P. Descouvemont, M.S. Hussein, Phys. Rev. Lett. 111, 082701 (2013)

    ADS  Article  Google Scholar 

  53. 53.

    P. Descouvemont, T. Druet, L.F. Canto, M.S. Hussein, Phys. Rev. C 91, 024606 (2015)

    ADS  Article  Google Scholar 

  54. 54.

    T. Matsumoto, E. Hiyama, M. Yahiro, K. Ogata, Y. Iseri, M. Kamimura, Nucl. Phys. A 738, 471 (2004)

    ADS  Article  Google Scholar 

  55. 55.

    M. Rodríguez-Gallardo et al., Phys. Rev. C 80, 051601(R) (2009)

    ADS  Article  Google Scholar 

  56. 56.

    M. Rodríguez-Gallardo et al., Phys. Rev. C 77, 064609 (2008)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Prof. R. A. Broglia and Prof. A. Vitturi for fruitful discussions. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No 714625).

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. Cappuzzello.

Additional information

Communicated by Nicolas Alamanos

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cappuzzello, F., Carbone, D., Cavallaro, M. et al. Confirmation of Giant Pairing Vibration evidence in \(^{\mathrm {12,13}}\)C(\(^{\mathrm {18}}\)O,\(^{\mathrm {16}}\)O)\(^{\mathrm {14,15}}\)C reactions at 275 MeV. Eur. Phys. J. A 57, 34 (2021). https://doi.org/10.1140/epja/s10050-021-00345-7

Download citation