Open-charm Euclidean correlators within heavy-meson EFT interactions

Abstract

The open-charm Euclidean correlators have been computed for the first time using the thermal spectral functions extracted from a finite-temperature self-consistent unitarized approach based on a chiral effective field theory that implements heavy-quark spin symmetry. The inclusion of the full-energy dependent open-charm spectral functions in the calculation of the Euclidean correlators leads to a similar behaviour as the one obtained in lattice QCD for temperatures well below the transition deconfinement temperature. The discrepancies at temperatures close or above the transition deconfinement temperature could indicate that higher-energy states, that are not present in the open-charm spectral functions, become relevant for a quantitative description of the lattice QCD correlators at those temperatures. In fact, we find that the inclusion of a continuum of scattering states improves the comparison at small Euclidean times, whereas differences still arise for large times.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data used in this paper are available upon request via email.]

Notes

  1. 1.

    Note that the lattice correlators we used here are not continuum extrapolated and therefore suffer from cut-off effects at small \(\tau \lesssim 0.1~\text {fm}\).

References

  1. 1.

    R. Rapp et al., Lect. Notes Phys. 814, 335 (2011). https://doi.org/10.1007/978-3-642-13293-3_4

    ADS  Article  Google Scholar 

  2. 2.

    L. Tolos, Int. J. Mod. Phys. E 22, 1330027 (2013). https://doi.org/10.1142/S0218301313300270

    ADS  Article  Google Scholar 

  3. 3.

    A. Hosaka, T. Hyodo, K. Sudoh, Y. Yamaguchi, S. Yasui, Prog. Part. Nucl. Phys. 96, 88 (2017). https://doi.org/10.1016/j.ppnp.2017.04.003

    ADS  Article  Google Scholar 

  4. 4.

    G. Aarts et al., Eur. Phys. J. A 53(5), 93 (2017). https://doi.org/10.1140/epja/i2017-12282-9

    ADS  Article  Google Scholar 

  5. 5.

    T. Matsui, H. Satz, Phys. Lett. B 178, 416 (1986). https://doi.org/10.1016/0370-2693(86)91404-8

    ADS  Article  Google Scholar 

  6. 6.

    A. Capella, E. Ferreiro, A. Kaidalov, Phys. Rev. Lett. 85, 2080 (2000). https://doi.org/10.1103/PhysRevLett.85.2080

    ADS  Article  Google Scholar 

  7. 7.

    W. Cassing, E. Bratkovskaya, Phys. Rept. 308, 65 (1999). https://doi.org/10.1016/S0370-1573(98)00028-3

    ADS  Article  Google Scholar 

  8. 8.

    R. Vogt, Phys. Rept. 310, 197 (1999). https://doi.org/10.1016/S0370-1573(98)00074-X

    ADS  Article  Google Scholar 

  9. 9.

    C. Gerschel, J. Hufner, Ann. Rev. Nucl. Part. Sci. 49, 255 (1999). https://doi.org/10.1146/annurev.nucl.49.1.255

    ADS  Article  Google Scholar 

  10. 10.

    A. Rothkopf, Phys. Rept. 858, 1 (2020). https://doi.org/10.1016/j.physrep.2020.02.006

    ADS  MathSciNet  Article  Google Scholar 

  11. 11.

    M. Jarrell, J. Gubernatis, Phys. Rept. 269, 133 (1996). https://doi.org/10.1016/0370-1573(95)00074-7

    ADS  Article  Google Scholar 

  12. 12.

    G. Montaña, A. Ramos, L. Tolos, J.M. Torres-Rincon, Phys. Lett. B 806, 135464 (2020). https://doi.org/10.1016/j.physletb.2020.135464

    Article  Google Scholar 

  13. 13.

    G. Montaña, A. Ramos, L. Tolos, J.M. Torres-Rincon, (2020) (Accepted in Phys. Rev. D)

  14. 14.

    A. Kelly, A. Rothkopf, J.I. Skullerud, Phys. Rev. D 97(11), 114509 (2018). https://doi.org/10.1103/PhysRevD.97.114509

    ADS  Article  Google Scholar 

  15. 15.

    F. Karsch, M. Mustafa, M. Thoma, Phys. Lett. B 497, 249 (2001). https://doi.org/10.1016/S0370-2693(00)01322-8

    ADS  Article  Google Scholar 

  16. 16.

    G. Aarts, J.M. Martinez Resco, Nucl. Phys. B 726, 93 (2005). https://doi.org/10.1016/j.nuclphysb.2005.08.012

    ADS  Article  Google Scholar 

  17. 17.

    A. Mocsy, P. Petreczky, Phys. Rev. D 77, 014501 (2008). https://doi.org/10.1103/PhysRevD.77.014501

    ADS  Article  Google Scholar 

  18. 18.

    J. Erdmenger, N. Evans, I. Kirsch, E. Threlfall, Eur. Phys. J. A 35, 81 (2008). https://doi.org/10.1140/epja/i2007-10540-1

    ADS  Article  Google Scholar 

  19. 19.

    J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal, U.A. Wiedemann, Gauge/String Duality, Hot QCD and Heavy Ion Collisions (Cambridge University Press, 2014). https://doi.org/10.1017/CBO9781139136747

  20. 20.

    H.T. Ding, O. Kaczmarek, S. Mukherjee, H. Ohno, H. Shu, Phys. Rev. D 97(9), 094503 (2018). https://doi.org/10.1103/PhysRevD.97.094503

    ADS  Article  Google Scholar 

  21. 21.

    Y. Burnier, H.T. Ding, O. Kaczmarek, A.L. Kruse, M. Laine, H. Ohno, H. Sandmeyer, JHEP 11, 206 (2017). https://doi.org/10.1007/JHEP11(2017)206

    ADS  Article  Google Scholar 

  22. 22.

    Z.H. Guo, L. Liu, U.G. Meißner, J.A. Oller, A. Rusetsky, Eur. Phys. J. C 79(1), 13 (2019). https://doi.org/10.1140/epjc/s10052-018-6518-1

    ADS  Article  Google Scholar 

  23. 23.

    A. Bazavov et al., Phys. Lett. B 737, 210 (2014). https://doi.org/10.1016/j.physletb.2014.08.034

    ADS  Article  Google Scholar 

  24. 24.

    F. Klingl, N. Kaiser, W. Weise, Z. Phys A 356, 193 (1996). https://doi.org/10.1007/s002180050167

    ADS  Article  Google Scholar 

  25. 25.

    P. Gubler, W. Weise, Nucl. Phys. A 954, 125 (2016). https://doi.org/10.1016/j.nuclphysa.2016.04.018

    ADS  Article  Google Scholar 

  26. 26.

    F. Karsch, E. Laermann, P. Petreczky, S. Stickan, Phys. Rev. D 68, 014504 (2003). https://doi.org/10.1103/PhysRevD.68.014504

    ADS  Article  Google Scholar 

  27. 27.

    F. Meyer, Hadronic correlators at high temperature: Spectral and transport properties. Ph.D. thesis, Universität Bielefeld, Bielefeld (2016)

Download references

Acknowledgements

The authors thank J.I. Skullerud and A. Rothkopf for kindly providing the lattice QCD data. G.M. and A.R. acknowledge support from the Spanish Ministerio de Economía y Competitividad (MINECO) under the project MDM-2014-0369 of ICCUB (Unidad de Excelencia “María de Maeztu”), and, with additional European FEDER funds, under the contract FIS2017-87534-P. G.M. also acknowledges support from the FPU17/04910 Doctoral Grant from the Spanish Ministerio de Educación, Cultura y Deporte and from a STSM Grant from THOR COST Action CA15213. L.T. acknowledges support from the FPA2016-81114-P Grant from the former Ministerio de Ciencia, Innovación y Universidades, the PID2019-110165GB-I00 Grant from the Ministerio de Ciencia e Innovación, the Heisenberg Programme of the Deutsche Forschungsgemeinschaft (DFG, German research Foundation) under the Project Nr. 383452331 and Nr. 411563442 (Hot Heavy Mesons), and the THOR COST Action CA15213. L.T. and O.K. acknowledge support from the DFG through the Grant Nr. 315477589 - TRR 211 (Strong-interaction matter under extreme conditions). We also thank the EU STRONG-2020 project under the program H2020-INFRAIA-2018-1, grant agreement no. 824093.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Glòria Montaña.

Additional information

Communicated by Ralf Rapp.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Montaña, G., Kaczmarek, O., Tolos, L. et al. Open-charm Euclidean correlators within heavy-meson EFT interactions. Eur. Phys. J. A 56, 294 (2020). https://doi.org/10.1140/epja/s10050-020-00300-y

Download citation