Deuteron and antideuteron coalescence in heavy-ion collisions: energy dependence of the formation geometry

Abstract

We investigate the collision energy dependence of deuteron and antideuteron emission in the RHIC-BES low- to mid-energy range \(\sqrt{s_{NN}}\) = 4.6–200 GeV where the formation rate of antinuclei compared to nuclei is strongly suppressed. In the coalescence picture, this can be understood as bulk emission for nuclei in contrast to surface emission for antinuclei. By comparison with experimental data on the coalescence parameter \(B_2\), we are able to extract the respective source geometries. This interpretation is further supported by results from the UrQMD transport model, and establishes the following picture: At low energies, nucleons freeze out over the total fireball volume, while antinucleons are annihilated inside the nucleon-rich fireball and can only freeze out on its surface. Towards higher energies, this annihilation effect becomes less significant because of the enhanced meson production in the reaction. Thus, the nucleon and antinucleon freeze-out distributions become similar with increasing energy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.]

Notes

  1. 1.

    Please note that this form differs from the one given in [21] which contained a minor mistake.

  2. 2.

    We thank S. Mrówczyński for pointing out to us that the coalescence model can include a finite formation time [17, 33].

References

  1. 1.

    R. Hagedorn, Phys. Rev. Lett. 5, 276 (1960)

    ADS  Article  Google Scholar 

  2. 2.

    S. Butler, C. Pearson, Phys. Rev. Lett. 7, 69 (1961)

    ADS  Article  Google Scholar 

  3. 3.

    J. Nagle, B. Kumar, D. Kusnezov, H. Sorge, R. Mattiello, Phys. Rev. C 53, 367 (1996)

    ADS  Article  Google Scholar 

  4. 4.

    J. Schaffner-Bielich, A. Gal, Phys. Rev. C 62, 034311 (2000). arXiv:nucl-th/0005060

  5. 5.

    B. Monreal et al., Phys. Rev. C 60, 031901 (1999). arXiv:nucl-th/9904080

  6. 6.

    L.W. Chen, C. Ko, B.A. Li, Nucl. Phys. A 729, 809 (2003). arXiv:nucl-th/0306032

  7. 7.

    Y. Oh, C.M. Ko, Phys. Rev. C 76, 054910 (2007). arXiv:0707.3332

  8. 8.

    L. Zhu, C.M. Ko, X. Yin, Phys. Rev. C 92, 064911 (2015). arXiv:1510.03568

  9. 9.

    J. Chen, D. Keane, Y.G. Ma, A. Tang, Z. Xu, Phys. Rept. 760, 1 (2018). arXiv:1808.09619

  10. 10.

    R. Malaney, G. Mathews, Phys. Rept. 229, 145 (1993)

    ADS  Article  Google Scholar 

  11. 11.

    M. Rufa, J. Schaffner, J. Maruhn, H. Stoecker, W. Greiner, P. Reinhard, Phys. Rev. C 42, 2469 (1990)

    ADS  Article  Google Scholar 

  12. 12.

    E. Carlson, A. Coogan, T. Linden, S. Profumo, A. Ibarra, S. Wild, Phys. Rev. D 89, 076005 (2014). arXiv:1401.2461

  13. 13.

    M. Korsmeier, F. Donato, N. Fornengo, Phys. Rev. D 97, 103011 (2018). arXiv:1711.08465

  14. 14.

    P. Braun-Munzinger, B. Dönigus, Nucl. Phys. A 987, 144 (2019). arXiv:1809.04681

  15. 15.

    M. Beyer, Nucl. Phys. A 560, 895 (1993). arXiv:nucl-th/9302002

  16. 16.

    S. Aid et al. (H1), Phys. Lett. B 353, 578 (1995). arXiv:hep-ex/9504008

  17. 17.

    S. Mrowczynski, P. Slon (2019). arXiv:1904.08320

  18. 18.

    S. Sombun, K. Tomuang, A. Limphirat, P. Hillmann, C. Herold, J. Steinheimer, Y. Yan, M. Bleicher, Phys. Rev. C 99, 014901 (2019). arXiv:1805.11509

  19. 19.

    S. Bazak, S. Mrowczynski, Mod. Phys. Lett. A 33, 1850142 (2018). arXiv:1802.08212

  20. 20.

    S. Mrowczynski, Acta Phys. Polon. B 48, 707 (2017). arXiv:1607.02267

  21. 21.

    S. Mrowczynski, Phys. Lett. B 308, 216 (1993)

    ADS  Article  Google Scholar 

  22. 22.

    J. Nagle, B. Kumar, M. Bennett, S. Coe, G. Diebold, J. Pope, A. Jahns, H. Sorge, Phys. Rev. Lett. 73, 2417 (1994)

    ADS  Article  Google Scholar 

  23. 23.

    M. Bleicher, C. Spieles, A. Jahns, R. Mattiello, H. Sorge, H. Stoecker, W. Greiner, Phys. Lett. B 361, 10 (1995). arXiv:nucl-th/9506009

  24. 24.

    P.E. Hodgson, Nuclear reactions and nuclear structure, vol. 426 (Clarendon Press, Oxford, 1971)

    Google Scholar 

  25. 25.

    R. Arsenescu et al., NA52 (NEWMASS). J. Phys. G 25, 225 (1999)

    ADS  Google Scholar 

  26. 26.

    G. Van Buren (E864), Nucl. Phys. A 661, 391 (1999)

  27. 27.

    T. Armstrong et al. (E864), Phys. Rev. Lett. 85, 2685 (2000). arXiv:nucl-ex/0005001

  28. 28.

    J. Adam et al. (STAR), Phys. Rev. C 99, 064905 (2019). arXiv:1903.11778

  29. 29.

    E.V. Shuryak, New Phases of QCD; the Tricritical Point; and Rhic as a “Nutcracker”, in 15th Winter Workshop on Nuclear Dynamics (Springer, 1999), pp. 179–188, hep-ph/9903297

  30. 30.

    S. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998). arXiv:nucl-th/9803035

  31. 31.

    M. Bleicher et al., J. Phys. G 25, 1859 (1999). arXiv:hep-ph/9909407

  32. 32.

    G. Graef, J. Steinheimer, F. Li, M. Bleicher, Phys. Rev. C 90, 064909 (2014). arXiv:1409.7954

  33. 33.

    R. Maj, S. Mrowczynski, Phys. Rev. C 80, 034907 (2009). arXiv:0903.0111

  34. 34.

    V. Gaebel, M. Bonne, T. Reichert, A. Burnic, P. Hillmann, M. Bleicher (2020). arXiv:2006.12951

  35. 35.

    J. Steinheimer, A. Botvina, M. Bleicher, Phys. Rev. C 95, 014911 (2017). arXiv:1605.03439

  36. 36.

    A. Botvina, J. Steinheimer, M. Bleicher, Phys. Rev. C 96, 014913 (2017). arXiv:1706.08335

Download references

Acknowledgements

We thank S. Mrówczyński for fruitful comments. This work was supported by the Development and Promotion of Science and Technology Talents Project (DPST)-Royal Thai Government Scholarship, Suranaree University of Technology (SUT), the Deutscher Akademischer Austausch Dienst (DAAD), the Stiftung Polytechnische Gesellschaft Frankfurt am Main, the Helmholtz International Center for FAIR (HIC for FAIR) within the LOEWE program launched by the State of Hesse, and the COST Action CA15213 (THOR). The computational resources were provided by the Center for Scientific Computing (CSC) at the Goethe-Universität Frankfurt. We would also like to express our gratitude to our colleagues in Frankfurt and at SUT for their hospitality, enthusiastic engagement in the discussions and valuable suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Apiwit Kittiratpattana.

Additional information

Communicated by Laura Tolos.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kittiratpattana, A., Wondrak, M.F., Hamzic, M. et al. Deuteron and antideuteron coalescence in heavy-ion collisions: energy dependence of the formation geometry. Eur. Phys. J. A 56, 274 (2020). https://doi.org/10.1140/epja/s10050-020-00269-8

Download citation