Femtoscopy scales and particle production in the relativistic heavy ion collisions from Au+Au at 200 AGeV to Xe+Xe at 5.44 ATeV within the integrated hydrokinetic model

Abstract

The recent results on the main soft observables, including hadron and photon yields and particle number ratios, \(p_T\) spectra, flow harmonics, as well as the femtoscopy radii, obtained within the integrated hydrokinetic model (iHKM) for high-energy heavy-ion collisions are reviewed and re-examined. The cases of different nuclei colliding at different energies are considered: Au+Au collisions at the top RHIC energy \(\sqrt{s_{NN}}=200\) GeV, Pb+Pb collisions at the LHC energies \(\sqrt{s_{NN}}=2.76\) TeV and \(\sqrt{s_{NN}}=5.02\) TeV, and the LHC Xe+Xe collisions at \(\sqrt{s_{NN}}=5.44\) TeV. The effect of the initial conditions and the model parameters, including the utilized equation of state (EoS) for quark-gluon phase, on the simulation results, as well as the role of the final afterburner stage of the matter evolution are discussed. The possible solution of the so-called “photon puzzle” is considered. The attention is also paid to the dependency of the interferometry volume and individual interferometry radii on the initial transverse geometrical size of the system formed in the collision.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All the necessary data are presented in the tables and figures within the article. The model results demonstrated in the graphs can also be obtained from the authors in tabular form.]

Notes

  1. 1.

    The corresponding Lorentz \(\gamma \) factor in the center of mass frame is of the order of \(10^2\) for top RHIC energy and of the order of \(10^3\) for the LHC. Thus, the thickness of the partonic “pancake” in each case is of the order of \(10^{-2}\) fm and \(10^{-3}\) fm respectively. At the same time in the momentum space the corresponding momentum distributions are respectively Lorentz elongated, that can be accounted for by using a wide (in longitudinal direction) initial momentum distribution.

  2. 2.

    It is interesting, that although a new state of matter, created in relativistic nucleus-nucleus collisions is often referred to as “quark-gluon plasma” (QGP), to stress its property to contain free color charges, it actually behaves rather like a nearly perfect liquid, than like “plasma”, i.e. like ionized gas.

  3. 3.

    The utilized list of hadron states is consistent with the Laine–Schroeder EoS, however for the HotQCD EoS it leads to small violation of conservation laws. As it is shown in [71], to reach the full correspondence of HotQCD and HRG equations of state one needs to include in the latter one not only all the present states from Particle Data Group table (including not well-established), but also a large number of hypothetical states predicted by quark model. In our current analysis we do not account for these states.

References

  1. 1.

    B. Mueller, A. Schaefer, Int. J. Mod. Phys. E 20, 2235 (2011)

    ADS  Google Scholar 

  2. 2.

    J. Berges, K. Boguslavski, S. Schlichting, R. Venugopalan, Phys. Rev. D 89, 114007 (2014)

    ADS  Google Scholar 

  3. 3.

    J.-P. Blaizot, B. Wu, L. Yan, Nucl. Phys. A 930, 139 (2014)

    ADS  Google Scholar 

  4. 4.

    O. DeWolfe, S.S. Gubser, C. Rosen, D. Teaney, Prog. Part. Nucl. Phys. 75, 86 (2014)

    ADS  Google Scholar 

  5. 5.

    S.V. Akkelin, Yu.M. Sinyukov, Phys. Rev. C 89, 034910 (2014)

  6. 6.

    X.-G. Huang, J. Liao, Int. J. Mod. Phys. E 23, 1430003 (2014)

    ADS  Google Scholar 

  7. 7.

    R. Venugopalan, Nucl. Phys. A 928, 209 (2014)

    ADS  Google Scholar 

  8. 8.

    A. Kurkela, E. Lu, Phys. Rev. Lett. 113, 182301 (2014)

    ADS  Google Scholar 

  9. 9.

    J. Berges, B. Schenke, S. Schlichting, R. Venugopalan, Nucl. Phys. A 931, 348 (2014)

    ADS  Google Scholar 

  10. 10.

    S.A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998)

    ADS  Google Scholar 

  11. 11.

    M. Bleicher et al., J. Phys. G 25, 1859 (1999)

    ADS  Google Scholar 

  12. 12.

    Y. Nara, N. Otuka, A. Ohnishi, K. Niita, S. Chiba, Phys. Rev. C 61, 024901 (2000)

    ADS  Google Scholar 

  13. 13.

    C. Nonaka, S.A. Bass, Phys. Rev. C 75, 014902 (2007)

    ADS  Google Scholar 

  14. 14.

    T. Hirano, U.W. Heinz, D. Kharzeev, R. Lacey, Y. Nara, Phys. Rev. C 77, 044909 (2008)

    ADS  Google Scholar 

  15. 15.

    S. Pratt, J. Vredevoogd, Phys. Rev. C 78, 054906 (2008) [Erratum-ibid. C 79, 069901 (2009)]

  16. 16.

    H. Petersen, Phys. Rev. C 84, 034912 (2011)

    ADS  Google Scholar 

  17. 17.

    K. Werner, I. Karpenko, T. Pierog, Phys. Rev. Lett. 106, 122004 (2011)

    ADS  Google Scholar 

  18. 18.

    H. Song, S.A. Bass, U. Heinz, Phys. Rev. C 83, 054912 (2011)

    ADS  Google Scholar 

  19. 19.

    V.Yu. Naboka, S.V. Akkelin, Iu.A. Karpenko, Yu.M. Sinyukov, Phys. Rev. C 91, 014906 (2015)

  20. 20.

    V.Yu. Naboka, Iu.A. Karpenko, Yu.M. Sinyukov, Phys. Rev. C 93, 024902 (2016)

  21. 21.

    W. Broniowski, M. Rybczynski, P. Bozek, Comput. Phys. Commun. 180, 69 (2009)

    ADS  Google Scholar 

  22. 22.

    H.J. Drescher, Y. Nara, Phys. Rev. C 75, 034905 (2007)

    ADS  Google Scholar 

  23. 23.

    F. Gelis, E. Iancu, J. Jalilian-Marian, R. Venugopalan, Annu. Rev. Nucl. Part. Sci. 60, 463 (2010)

    ADS  Google Scholar 

  24. 24.

    Yu.M. Sinyukov, S.V. Akkelin, Y. Hama, Phys. Rev. Lett. 89, 052301 (2002)

  25. 25.

    S.V. Akkelin, Y. Hama, Iu.A. Karpenko, Yu.M. Sinyukov, Phys. Rev. C 78, 034906 (2008)

  26. 26.

    Yu.M. Sinyukov, S.V. Akkelin, Iu.A. Karpenko, Y. Hama, Acta Phys. Polon. B 40, 1025 (2009)

  27. 27.

    Yu.A. Karpenko, Yu.M. Sinyukov, J. Phys. G Nucl. Part. Phys. 38, 124059 (2011)

  28. 28.

    Iu.A. Karpenko, Yu.M. Sinyukov, K. Werner, Phys. Rev. C 87, 024914 (2013)

  29. 29.

    Yu.M. Sinyukov, S.V. Akkelin, Iu.A. Karpenko, V.M. Shapoval, Adv. High Energy Phys. 2013, Article ID 198928 (2013)

  30. 30.

    Yu.M. Sinyukov, V.M. Shapoval, Phys. Rev. C 97, 064901 (2018)

  31. 31.

    V.M. Shapoval, Yu.M. Sinyukov, Phys. Rev. C 100, 044905 (2019)

  32. 32.

    M.D. Adzhymambetov, V.M. Shapoval, Yu.M. Sinyukov, Nucl. Phys. A 987, 321 (2019)

  33. 33.

    V.M. Shapoval, P. Braun-Munzinger, YuM Sinyukov, Nucl. Phys. A 968, 391 (2017)

    ADS  Google Scholar 

  34. 34.

    V.Yu. Naboka, Yu.M. Sinyukov, G.M. Zinovjev, Phys. Rev. C 97, 054907 (2018)

  35. 35.

    V.Yu. Naboka, Yu.M. Sinyukov, G.M. Zinovjev, Nucl. Phys. A 1000, 121843 (2020)

  36. 36.

    R. Ryblewski, W. Florkowski, Acta Phys. Polon. B 42, 115 (2011)

    Google Scholar 

  37. 37.

    E. Iancu, A. Leonidov, L. McLerran, arXiv:hep-ph/0202270

  38. 38.

    S. Acharya et al. (ALICE Collaboration), Phys. Lett. B 788, 166–179 (2019)

  39. 39.

    S. Ragoni (for the ALICE Collaboration), arXiv:1809.01086 [hep-ex]

  40. 40.

    L. Tinti, W. Florkowski, Phys. Rev. C 89, 034907 (2014)

    ADS  Google Scholar 

  41. 41.

    D. Bazow, U. Heinz, M. Strickland, Phys. Rev. C 90, 054910 (2014)

    ADS  Google Scholar 

  42. 42.

    U. Heinz, D. Bazow, M. Strickland, Nucl. Phys. A 931, 920 (2014)

    ADS  Google Scholar 

  43. 43.

    S.V. Akkelin, Yu.M. Sinyukov, Phys. Rev. C 81, 064901 (2010)

  44. 44.

    W. Israel, Ann. Phys. 100, 310 (1976)

    ADS  Google Scholar 

  45. 45.

    J.M. Stewart, Proc. R. Soc. Lond. A 357, 59 (1977)

    ADS  Google Scholar 

  46. 46.

    W. Israel, J.M. Stewart, Ann. Phys. 118, 341 (1979)

    ADS  Google Scholar 

  47. 47.

    J.D. Bjorken, Phys. Rev. D 27, 140 (1983)

    ADS  Google Scholar 

  48. 48.

    P.K. Kovtun, D.T. Son, A.O. Starinets, Phys. Rev. Lett. 94, 111601 (2005)

    ADS  Google Scholar 

  49. 49.

    L.P. Csernai, J.I. Kapusta, L.D. McLerran, Phys. Rev. Lett. 97, 152303 (2006)

    ADS  Google Scholar 

  50. 50.

    I. Karpenko, P. Huovinen, M. Bleicher, Comput. Phys. Commun. 185, 3016 (2014)

    ADS  Google Scholar 

  51. 51.

    M. Laine, Y. Schroeder, Phys. Rev. D 73, 085009 (2006)

    ADS  Google Scholar 

  52. 52.

    A. Andronic, P. Braun-Munzinger, J. Stachel, Acta Phys. Polon. B 40, 1005 (2009)

    ADS  Google Scholar 

  53. 53.

    J. Manninen, F. Becattini, Phys. Rev. C 78, 054901 (2008)

    ADS  Google Scholar 

  54. 54.

    F. Becattini, J. Manninen, J. Phys. G 35, 104013 (2008)

    ADS  Google Scholar 

  55. 55.

    A. Bazarov et al. (The HotQCD Collaboration), Phys. Rev. D 90, 094503 (2014)

  56. 56.

    J. Stachel, A. Andronic, P. Braun-Munzinger, K. Redlich, J. Phys. Conf. Ser. 509, 012019 (2014)

    Google Scholar 

  57. 57.

    F. Karsch, arXiv:0711.0656

  58. 58.

    S.V. Akkelin, Yu.M. Sinyukov, Phys. Rev. C 70, 064901 (2004)

  59. 59.

    F. Cooper, G. Frye, Phys. Rev. D 10, 186 (1974)

    ADS  Google Scholar 

  60. 60.

    L. Van Hove, Z. Phys. C 21, 93 (1983)

    ADS  Google Scholar 

  61. 61.

    Yu.M. Sinyukov, Preprint ITP-85-53E, Kiev (1985)

  62. 62.

    Yu.M. Sinyukov, Physics of many-particle systems. Kiev 10, 82 (1986)

  63. 63.

    Yu.M Sinyukov, Z. Phys. C 43, 401 (1989)

  64. 64.

    N.S. Amelin, R. Lednicky, T.A. Pocheptsov, I.P. Lokhtin, L.V. Malinina, A.M. Snigirev, Iu.A. Karpenko, Yu.M. Sinyukov, Phys. Rev. C 74, 064901 (2006)

  65. 65.

    K.A. Bugaev, Nucl. Phys. A 606, 559 (1996)

    ADS  Google Scholar 

  66. 66.

    Cs. Anderlik et al., Phys. Rev. C 59, 3309 (1999)

  67. 67.

    V.K. Magas et al., Heavy Ion Phys. 9, 193 (1999)

    Google Scholar 

  68. 68.

    P. Huovinen, H. Petersen, Eur. Phys. J. A 48, 171 (2012)

    ADS  Google Scholar 

  69. 69.

    D. Molnar, Z. Wolff, Phys. Rev. C 95, 024903 (2017)

    ADS  Google Scholar 

  70. 70.

    D. Molnar, J. Phys. G 38, 124173 (2011)

    ADS  Google Scholar 

  71. 71.

    P. Alba et al., Phys. Rev. D 96, 034517 (2017)

    ADS  Google Scholar 

  72. 72.

    T. Lappi, Phys. Lett. B 643, 11 (2006)

    ADS  Google Scholar 

  73. 73.

    B. Abelev et al. (The ALICE Collaboration), Phys. Rev. Lett. 109, 252301 (2012)

  74. 74.

    B. Abelev et al. (The ALICE Collaboration), Phys. Rev. C 88, 044910 (2013)

  75. 75.

    F. Becattini et al., New Horizons in Fundamental Physics (Springer, New York, 2016), pp. 139–150

    Google Scholar 

  76. 76.

    S. Chatterjee, R.M. Godbole, S. Gupta, Phys. Lett. B 727, 554 (2013)

    ADS  Google Scholar 

  77. 77.

    V.K. Magas, L.P. Csernai, D.D. Strottman, Phys. Rev. C 64, 014901 (2001)

    ADS  Google Scholar 

  78. 78.

    V.K. Magas, L.P. Csernai, D.D. Strottman, Nucl. Phys. A 712, 167 (2002)

    ADS  Google Scholar 

  79. 79.

    Z.T. Liang, X.N. Wang, Phys. Rev. Lett. 94, 102301 (2005) [Erratum, ibidem 96, 039901(E) (2006)]

  80. 80.

    F. Becattini, F. Piccinini, Ann. Phys. 323, 2452 (2008)

    ADS  Google Scholar 

  81. 81.

    F. Bellini (for the ALICE Collaboration), Nucl. Phys. A 982, 427 (2019)

  82. 82.

    D.S.D. Albuquerque (for the ALICE Collaboration), Nucl. Phys. A 982, 823 (2019)

  83. 83.

    N. Jacazio (for the ALICE Collaboration), Nucl. Phys. A 967, 421 (2017)

  84. 84.

    J. Adams et al. (The STAR Collaboration), Phys. Rev. C 72, 014904 (2005)

  85. 85.

    J. Adam et al. (The ALICE Collaboration), Phys. Rev. Lett. 116, 132302 (2016)

  86. 86.

    M. Floris, Nucl. Phys. A 931, 103–112 (2014)

    ADS  Google Scholar 

  87. 87.

    J. Adams et al. (The STAR Collaboration), Phys. Rev. Lett. 98, 062301 (2007)

  88. 88.

    Yu.M. Sinyukov, Nucl. Phys. A 566, 589 (1994)

  89. 89.

    Yu.M. Sinyukov, in Hot Hadronic Matter: Theory and Experiment, ed. by J. Letessier, H.H. Gutbrod, J. Rafelski (Plenum, New York, 1995), p. 309

  90. 90.

    S.V. Akkelin, Yu.M. Sinyukov, Phys. Lett. B 356, 525 (1995)

  91. 91.

    V.M. Shapoval, P. Braun-Munzinger, Iu.A. Karpenko, Yu.M. Sinyukov, Nucl. Phys. A 929, 1 (2014)

  92. 92.

    J. Adam et al. (The ALICE Collaboration), Phys. Rev. C 96, 064613 (2017)

  93. 93.

    M. Lisa, S. Pratt, R. Soltz, U. Wiedemann, Annu. Rev. Nucl. Part. Sci. 55, 357 (2005)

    ADS  Google Scholar 

  94. 94.

    M. Lisa, Braz. J. Phys. 37, 963 (2007)

    ADS  Google Scholar 

  95. 95.

    S.V. Akkelin, Yu.M. Sinyukov, Phys. Rev. C 70, 064901 (2004)

  96. 96.

    S.V. Akkelin, Yu.M Sinyukov, Phys. Rev. C 73, 034908 (2006)

  97. 97.

    V.M. Shapoval, P. Braun-Munzinger, Iu.A. Karpenko, Yu.M. Sinyukov, Phys. Lett. B 725, 139 (2013)

  98. 98.

    K. Aamodt et al. (The ALICE Collaboration), Phys. Rev. D 84, 112004 (2011)

  99. 99.

    K. Aamodt et al. (The ALICE Collaboration), Phys. Lett. B 696, 328 (2011)

  100. 100.

    D. Antonczyk, Acta Phys. Polon. B 40, 1137 (2009)

    ADS  Google Scholar 

  101. 101.

    S.V. Afanasiev et al. (The NA49 Collaboration), Phys. Rev. C 66, 054902 (2002)

  102. 102.

    C. Alt et al. (The NA49 Collaboration), Phys. Rev. C 77, 064908 (2008)

  103. 103.

    J. Adams et al. (The STAR Collaboration), Phys. Rev. Lett. 92, 112301 (2004)

  104. 104.

    J. Adams et al. (The STAR Collaboration), Phys. Rev. C 71, 044906 (2004)

  105. 105.

    S.S. Adler et al. (The PHENIX Collaboration), Phys. Rev. C 69, 034909 (2004)

  106. 106.

    S.S. Adler et al. (The PHENIX Collaboration), Phys. Rev. Lett. 93, 152302 (2004)

  107. 107.

    Yu.M. Sinyukov, V.M. Shapoval, V.Yu. Naboka, Nucl. Phys. A 946, 227 (2016)

  108. 108.

    A. Adare et al. (The PHENIX Collaboration), Phys. Rev. C 91, 064904 (2015)

  109. 109.

    A. Adare et al. (The PHENIX Collaboration), Phys. Rev. C 94, 064901 (2016)

  110. 110.

    J. Adam et al. (The ALICE Collaboration), Phys. Lett. B 754, 235 (2016)

Download references

Acknowledgements

The research was carried out within the project “Spatiotemporal dynamics and properties of superdense matter in relativistic collisions of nuclei, and their signatures in current experiments at the LHC, RHIC and planned FAIR, NICA”. Agreement 7/2020 with NAS of Ukraine. It is partially supported by Tomsk State University Competitiveness Improvement Program and by COST Action THOR (CA15213).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Sinyukov.

Additional information

Communicated by Laura Tolos.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shapoval, V.M., Adzhymambetov, M.D. & Sinyukov, Y.M. Femtoscopy scales and particle production in the relativistic heavy ion collisions from Au+Au at 200 AGeV to Xe+Xe at 5.44 ATeV within the integrated hydrokinetic model. Eur. Phys. J. A 56, 260 (2020). https://doi.org/10.1140/epja/s10050-020-00266-x

Download citation