Hadron production in elementary nucleon–nucleon reactions from low to ultra-relativistic energies

Abstract

We study the hadron production in \(p+p\), \(p+n\) and \(n+n\) reactions within the microscopic Parton–Hadron-Dynamics (PHSD) transport approach in comparison to PYTHIA 8.2. We discuss the details of the “PHSD tune” of the Lund string model (realized by event generators FRITIOF and PYTHIA) in the vacuum (as in \(N+N\) collisions) as well as its in-medium modifications relevant for heavy-ion collisions where a hot and dense matter is produced. We compare the results of PHSD and PYTHIA 8.2 (default version) for the excitation function of hadron multiplicities as well as differential rapidity y, transverse momentum \(p_T\) and \(x_F\) distributions in \(p+p\), \(p+n\) and \(n+n\) reactions with the existing experimental data in the energy range \(\sqrt{s_{NN}} = 2.7 - 7000\) GeV. We discuss the production mechanisms of hadrons and the role of final state interactions (FSI) due to the hadronic rescattering. We also show the influence of the possible quark–gluon plasma (QGP) formation on hadronic observables in \(p+p\) collisions at LHC energies. We stress the importance of developing a reliable event generator for elementary reactions from low to ultra-relativistic energies in view of actual and upcoming heavy-ion experiments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This manuscript is a theoretical study. There is no experimental data associated to this manuscript.]

References

  1. 1.

    B. Andersson, G. Gustafson, G. Ingelman, T. Sjostrand, Phys. Rep. 97, 31 (1983)

    ADS  Google Scholar 

  2. 2.

    B. Andersson, G. Gustafson, B. Soderberg, Z. Phys. C 20, 317 (1983)

    ADS  Google Scholar 

  3. 3.

    B. Nilsson-Almqvist, E. Stenlund, Comput. Phys. Commun. 43, 387 (1987)

    ADS  Google Scholar 

  4. 4.

    B. Andersson, G. Gustafson, H. Pi, Z. Phys. C 57, 485 (1993)

    ADS  Google Scholar 

  5. 5.

    T. Sjostrand, S. Mrenna, P.Z. Skands, JHEP 0605, 026 (2006)

    ADS  Google Scholar 

  6. 6.

    J. Schwinger, Phys. Rev. 83, 664 (1951)

    ADS  MathSciNet  Google Scholar 

  7. 7.

    W. Cassing, E.L. Bratkovskaya, Phys. Rev. C 78, 034919 (2008)

    ADS  Google Scholar 

  8. 8.

    W. Cassing, Eur. Phys. J. ST 168, 3 (2009)

    Google Scholar 

  9. 9.

    W. Cassing, E.L. Bratkovskaya, Nucl. Phys. A 831, 215 (2009)

    ADS  Google Scholar 

  10. 10.

    E.L. Bratkovskaya, W. Cassing, V.P. Konchakovski, O. Linnyk, Nucl. Phys. A 856, 162 (2011)

    ADS  Google Scholar 

  11. 11.

    O. Linnyk, E.L. Bratkovskaya, W. Cassing, Prog. Part. Nucl. Phys. 87, 50 (2016)

    ADS  Google Scholar 

  12. 12.

    W. Cassing, E.L. Bratkovskaya, Phys. Rep. 308, 65 (1999)

    ADS  Google Scholar 

  13. 13.

    J. Aichelin, E. Bratkovskaya, A. Le Fèvre, V. Kireyeu, V. Kolesnikov, Y. Leifels, V. Voronyuk, G. Coci, Phys. Rev. C 101, 044905 (2020)

    ADS  Google Scholar 

  14. 14.

    S.A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998)

    ADS  Google Scholar 

  15. 15.

    M. Bleicher et al., J. Phys. G 25, 1859 (1999)

    ADS  Google Scholar 

  16. 16.

    O. Buss et al., Phys. Rep. 512, 1 (2012)

    ADS  Google Scholar 

  17. 17.

    J. Weil, V. Steinberg, J. Staudenmaier et al., Phys. Rev. C 94, 054905 (2016)

    ADS  Google Scholar 

  18. 18.

    K. Werner, F.M. Liu, T. Pierog, Phys. Rev. C 74, 044902 (2006)

    ADS  Google Scholar 

  19. 19.

    T. Pierog, I. Karpenko, J. Katzy, E. Yatsenko, K. Werner, Phys. Rev. C 92, 034906 (2015)

    ADS  Google Scholar 

  20. 20.

    S. Ostapchenko, Phys. Rev. D 83, 014018 (2011)

    ADS  Google Scholar 

  21. 21.

    G. Corcella, I. Knowles, G. Marchesini, S. Moretti, K. Odagiri, P. Richardson, M. Seymour, B. Webber, JHEP 01, 010 (2001)

    ADS  Google Scholar 

  22. 22.

    T. Sjöstrand, S. Ask, J.R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C.O. Rasmussen, P.Z. Skands, Comput. Phys. Commun. 191, 159 (2015)

    ADS  Google Scholar 

  23. 23.

    A. Peshier, W. Cassing, Phys. Rev. Lett. 94, 172301 (2005)

    ADS  Google Scholar 

  24. 24.

    W. Ehehalt, W. Cassing, Nucl. Phys. A 602, 449 (1996)

    ADS  Google Scholar 

  25. 25.

    N. Firdoua, Tuning of the PYTHIA 6.4 Multiple Parton Interaction model to Minimum Bias and Underlying Event data. CERN-THESIS-2013-419. 152 p. https://cds.cern.ch/search?ln=en&cc=CERN+Theses&sc=1&p=Firdoua&action_search=Search&op1=a&m1=a&p1=&f1=

  26. 26.

    W. Cassing, Nucl. Phys. A 700, 618 (2002)

    ADS  Google Scholar 

  27. 27.

    E. Seifert, W. Cassing, Phys. Rev. C 97, 024913 (2018)

    ADS  Google Scholar 

  28. 28.

    E. Seifert, W. Cassing, Phys. Rev. C 97, 044907 (2018)

    ADS  Google Scholar 

  29. 29.

    T. Sjöstrand, M. Utheim. arXiv:2005.05658 [hep-ph]

  30. 30.

    A. Casher, H. Neuberger, S. Nussinov, Phys. Rev. D 20, 179 (1979)

    ADS  Google Scholar 

  31. 31.

    B. Andersson, G. Gustafson, T. Sjöstrand, Z. Phys. C 6, 235 (1980)

    ADS  Google Scholar 

  32. 32.

    E.G. Gurvich, Phys. Lett. B 87, 386 (1979)

    ADS  Google Scholar 

  33. 33.

    G. Eichmann, H. Sanchis-Alepuz, R. Williams, R. Alkofer, C.S. Fischer, Prog. Part. Nucl. Phys. 91, 1 (2016)

    ADS  Google Scholar 

  34. 34.

    J. Geiss, W. Cassing, C. Greiner, Nucl. Phys. A 644, 107 (1998)

    ADS  Google Scholar 

  35. 35.

    E. Bratkovskaya, J. Aichelin, M. Thomere, S. Vogel, M. Bleicher, Phys. Rev. C 87, 064907 (2013)

    ADS  Google Scholar 

  36. 36.

    E.L. Bratkovskaya, W. Cassing, Nucl. Phys. A 807, 214 (2008)

    ADS  Google Scholar 

  37. 37.

    T. Song, H. Berrehrah, D. Cabrera, J.M. Torres-Rincon, L. Tolos, W. Cassing, E. Bratkovskaya, Phys. Rev. C 92, 014910 (2015)

    ADS  Google Scholar 

  38. 38.

    W. Cassing, L. Tolós, E.L. Bratkovskaya, A. Ramos, Nucl. Phys. A 727, 59 (2003)

    ADS  Google Scholar 

  39. 39.

    A. Ilner, D. Cabrera, C. Markert, E. Bratkovskaya, Phys. Rev. C 95, 014903 (2017)

    ADS  Google Scholar 

  40. 40.

    A. Ilner, J. Blair, D. Cabrera, C. Markert, E. Bratkovskaya, Phys. Rev. C 99, 024914 (2019)

    ADS  Google Scholar 

  41. 41.

    A. Ilner, J. Blair, D. Cabrera, C. Markert, E. Bratkovskaya, Phys. Rev. C 99, 024914 (2019)

    ADS  Google Scholar 

  42. 42.

    W. Cassing, A. Palmese, P. Moreau, E.L. Bratkovskaya, Phys. Rev. C 93, 014902 (2016)

    ADS  Google Scholar 

  43. 43.

    A. Palmese, W. Cassing, E. Seifert, T. Steinert, P. Moreau, E.L. Bratkovskaya, Phys. Rev. C 94, 044912 (2016)

    ADS  Google Scholar 

  44. 44.

    W. Cassing, K. Gallmeister, C. Greiner, Nucl. Phys. A 735, 277 (2004)

    ADS  Google Scholar 

  45. 45.

    N. Abgrall et al. (NA61/SHINE Collaboration), Eur. Phys. J. C 74, 2794 (2014)

  46. 46.

    A. Aduszkiewicz et al. (NA61/SHINE Collaboration), Eur. Phys. J. C 77, 617 (2017)

  47. 47.

    C. Alt et al. (NA49 Collaboration), Eur. Phys. J. C 45, 343 (2006)

  48. 48.

    T. Anticic et al. (NA49 Collaboration), Eur. Phys. J. C 68, 1 (2010)

  49. 49.

    T. Anticic et al. (NA49 Collaboration), Eur. Phys. J. C 65, 9 (2010)

  50. 50.

    M. Gazdzicki, D. Röhrich, Z. Phys. C 71, 55 (1996)

    ADS  Google Scholar 

  51. 51.

    H. Schopper (ed.), Landolt-Bornstein, NewSeries, Group I, vol. 12 (Springer, Berlin, 1988)

    Google Scholar 

  52. 52.

    M. Antinucci et al., Lett. Nuovo. Cimento Soc. Ital. Fis. 6, 121 (1973)

    Google Scholar 

  53. 53.

    A. Aduszkiewicz et al. (NA61/SHINE Collaboration). arXiv:2006.02062 [nucl-ex]

  54. 54.

    A. Aduszkiewicz et al. (NA61/SHINE Collaboration), Eur. Phys. J. C 76, 198 (2016)

  55. 55.

    A. Aduszkiewicz et al. (NA61/SHINE Collaboration). arXiv:1912.10871 [hep-ex]

  56. 56.

    V. Friese et al. (NA49 Collaboration), J. Phys. G 30, S119 (2004)

  57. 57.

    M.I. Gorenstein, M. Gazdzicki, K. Bugaev, Phys. Lett. B 567, 175 (2003)

    ADS  Google Scholar 

  58. 58.

    E. Bratkovskaya, S. Soff, H. Stoecker, M. van Leeuwen, W. Cassing, Phys. Rev. Lett. 92, 032302 (2004)

    ADS  Google Scholar 

  59. 59.

    B. Abelev et al. (STAR Collaboration), Phys. Rev. C 75, 064901 (2007)

  60. 60.

    A. Adare et al. (PHENIX Collaboration), Phys. Rev. C 83, 064903 (2011)

  61. 61.

    G. Alner et al. (UA5 Collaboration), Z. Phys. C 33, 1 (1986)

  62. 62.

    C. Albajar et al. (UA1 Collaboration), Nucl. Phys. B 335, 261 (1990)

  63. 63.

    B.B. Abelev et al. (ALICE Collaboration), Eur. Phys. J. C 73, 2662 (2013)

  64. 64.

    J. Adam et al. (ALICE Collaboration), Eur. Phys. J. C 75, 226 (2015)

  65. 65.

    A. Buckley, J. Butterworth, L. Lonnblad, D. Grellscheid, H. Hoeth, J. Monk, H. Schulz, F. Siegert, Comput. Phys. Commun. 184, 2803 (2013)

    ADS  Google Scholar 

  66. 66.

    M. Aaboud et al. (ATLAS Collaboration), Phys. Rev. C 96, 024908 (2017)

  67. 67.

    E. Shuryak, I. Zahed, Phys. Rev. C 88, 044915 (2013)

    ADS  Google Scholar 

  68. 68.

    A. Bzdak, B. Schenke, P. Tribedy, R. Venugopalan, Phys. Rev. C 87, 064906 (2013)

    ADS  Google Scholar 

  69. 69.

    J. Adam et al. (ALICE), Nature Phys. 13, 535 (2017)

  70. 70.

    C. Bierlich, G. Gustafson, L. Lönnblad, A. Tarasov, JHEP 03, 148 (2015)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge inspiring discussions and useful remarks from T. Sjöstrand and C. Bierlich. They are also grateful to C. Blume, W. Cassing, V. Lenivenko, P. Moreau, L. Oliva, K. Shtejer, O. Soloveva, T. Song and K. Werner for useful discussions and their interest to our work. We are grateful to S. Pulawski and M. Gazdzicki for providing us the experimental data from the NA61/SHINE Collaboration. Furthermore, we acknowledge support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation): Grant BR 4000/7-1, by the Russian Science Foundation Grant 19-42-04101 and by the GSI-IN2P3 agreement under contract number 13-70. Also we thank the COST Action THOR, CA15213. We acknowledge funding from the European Union’s Horizon 2020 research and innovation program STRONG-2020 under grant agreement No 824093. I.G. acknowledges support by the DFG through the Grant CRC-TR 211 ’Strong-interaction matter under extreme conditions’ – Project number 315477589 – TRR 211 and by HGS-HIRe for FAIR. The computational resources have been provided by the LOEWE-Center for Scientific Computing and the “Green Cube” at GSI.

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Bratkovskaya.

Additional information

Communicated by Laura Tolos.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kireyeu, V., Grishmanovskii, I., Kolesnikov, V. et al. Hadron production in elementary nucleon–nucleon reactions from low to ultra-relativistic energies. Eur. Phys. J. A 56, 223 (2020). https://doi.org/10.1140/epja/s10050-020-00232-7

Download citation