Skip to main content
Log in

Evaluation of hypernuclei in relativistic ion collisions

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In this paper, we present the results of the transport, coalescence and statistical model calculations to describe the production of hypernuclei and study their properties in relativistic nucleus-nucleus collisions. Such hypernuclei and low-temperature hypermatter can be produced as a result of hyperon capture by nuclear residues and free nucleons. The dynamical reaction stage leading to the strangeness production is described within the transport cascade and UrQMD models. Large excited hypernuclear species can be formed from target and projectile residues in peripheral collisions. To describe its following evolution at high excitation energies we have generalized the statistical multifragmentation model (SMM) on hypernuclei, as well as the evaporation, fission and Fermi-break-up models at low energies. We calculated the yields, the mass with isotopic distributions of produced nuclei and hypernuclei, and found important regularities and correlations. We have also established how the binding energies of hypernuclei can be evaluated via the comparison of isotope yields. Our approach can be used also for multistrange nuclei. We have extended the coalescence model for the formation of excited hyperclusters from individual baryons in the central collisions. De-excitation of hot coalescence clusters presents a novel mechanism for the hypernuclei production and shows new possibilities for their investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.]

References

  1. H. Bando, T. Motoba, J. Zofka, Int. J. Mod. Phys. A 5, 4021 (1990)

    ADS  Google Scholar 

  2. O. Hashimoto, H. Tamura, Prog. Part. Nucl. Phys. 57, 564 (2006)

    ADS  Google Scholar 

  3. A. Gal, E.V. Hungerford, D.J. Millener, Rev. Mod. Phys. 88, 035004 (2016)

    ADS  Google Scholar 

  4. J. Adam, L. Adamczyk, J.R. Adams et al., the STAR collaboration, Nat. Phys. 16, 409–412 (2020)

  5. C. Rappold, T.R. Saito, Springer Proc. Phys. 238, 913–921 (2020)

    Google Scholar 

  6. J. Chen, D. Keane, Y.-G. Ma, A. Tang, Z. Xu, Phys. Rep. 760, 1–39 (2018)

    ADS  MathSciNet  Google Scholar 

  7. P. Braun-Munzinger, B. Dönigus, Nucl. Phys. A 987, 144–201 (2019)

    ADS  Google Scholar 

  8. H. Lenske, M. Dhar, T. Gaitanos, X. Cao, Prog. Part. Nucl. Phys. 98, 119–206 (2018)

    ADS  Google Scholar 

  9. L. Contessi, M. Schäfer, N. Barnea, A. Gal, J. Mareš, Phys. Lett. B 797, 134893 (2019)

    Google Scholar 

  10. J. Schaffner, C.B. Dover, A. Gal, C. Greiner, H. Stoecker, Phys. Rev. Lett. 71, 1328 (1993)

    ADS  Google Scholar 

  11. Special issue on Progress in Strangeness Nuclear Physics, Edt. A. Gal, O Hashimoto and J. Pochodzalla, Nucl. Phys. A 881, 1–338 (2012)

  12. N. Buyukcizmeci, A.S. Botvina, J. Pochodzalla, M. Bleicher, Phys. Rev. C 88, 014611 (2013)

    ADS  Google Scholar 

  13. T. Hell, W. Weise, Phys. Rev. C 90, 045801 (2014)

    ADS  Google Scholar 

  14. A. Esser et al., Phys. Rev. Lett. 114, 232501 (2015)

    ADS  Google Scholar 

  15. M. Danysz, J. Pniewski, Philos. Mag. 44, 348 (1953)

    Google Scholar 

  16. B.I. Abelev et al., the STAR collaboration, Science 328, 58–62 (2010)

  17. B. Dönigus, ALICE collaboration, Nucl. Phys. A 904–905, 547c–550c (2013)

  18. T.R. Saito et al., HypHI collaboration. Nucl. Phys. A 881, 218 (2012)

  19. The PANDA collaboration, http://www-panda.gsi.de and arXiv:physics/0701090

  20. I. Vassiliev et al., CBM collaboration. JPS Conf. Proc. 17, 092001 (2017)

  21. https://indico.gsi.de/event/superfrs3 (access to pdf files via timetable and key ’walldorf’)

  22. NICA White Paper, http://theor.jinr.ru/twiki-cgi/view/NICA/WebHome, http://nica.jinr.ru/files/BM@N

  23. A.S. Botvina, J. Pochodzalla, Phys. Rev. C 76, 024909 (2007)

    ADS  Google Scholar 

  24. A.S. Botvina, K.K. Gudima, J. Steinheimer, M. Bleicher, I.N. Mishustin, Phys. Rev. C 84, 064904 (2011)

    ADS  Google Scholar 

  25. A.S. Botvina, K.K. Gudima, J. Pochodzalla, Phys. Rev. C 88, 054605 (2013)

    ADS  Google Scholar 

  26. A.S. Botvina et al., Phys. Lett. B 742, 7 (2015)

    ADS  Google Scholar 

  27. A.S. Botvina, K.K. Gudima, J. Steinheimer, M. Bleicher, J. Pochodzalla. Phys. Rev. C 95, 014902 (2017)

    ADS  Google Scholar 

  28. Z. Rudy, W. Cassing et al., Z. Phys. A 351, 217 (1995)

    ADS  Google Scholar 

  29. Th. Gaitanos, H. Lenske, U. Mosel, Phys. Lett. B 675, 297 (2009)

  30. T.A. Armstrong et al., Phys. Rev. C 47, 1957 (1993)

    ADS  Google Scholar 

  31. H. Ohm et al., Phys. Rev. C 55, 3062 (1997)

    ADS  Google Scholar 

  32. J. Steinheimer, A. Botvina, M. Bleicher, Phys. Rev. C 95, 014911 (2017)

    ADS  Google Scholar 

  33. A.S. Botvina, J. Steinheimer, M. Bleicher, Phys. Rev. C 96, 014913 (2017)

    ADS  Google Scholar 

  34. A.S. Lorente, A.S. Botvina, J. Pochodzalla, Phys. Lett. B 697, 222 (2011)

    ADS  Google Scholar 

  35. V.D. Toneev, K.K. Gudima, Nucl. Phys. A 400, 173c (1983)

    ADS  Google Scholar 

  36. V.D. Toneev, N.S. Amelin, K.K. Gudima, S.Yu. Sivoklokov, Nucl. Phys. A 519, 463c (1990)

  37. S.A. Bass et al., Prog. Part. Nucl. Phys. 41, 225 (1998)

    ADS  Google Scholar 

  38. M. Bleicher et al., J. Phys. G 25, 1859 (1999)

    ADS  Google Scholar 

  39. Y.L. Sun et al., Phys. Rev. C 98, 024903 (2018)

    ADS  Google Scholar 

  40. H. Geissel et al., Nucl. Inst. Methods Phys. Res. B 204, 71 (2003)

    ADS  Google Scholar 

  41. J.P. Bondorf, A.S. Botvina, A.S. Iljinov, I.N. Mishustin, K. Sneppen, Phys. Rep. 257, 133 (1995)

    ADS  Google Scholar 

  42. H. Xi et al., Z. Phys. A 359, 397 (1997)

    ADS  Google Scholar 

  43. R. Ogul et al., Phys. Rev. C 83, 024608 (2011)

    ADS  Google Scholar 

  44. H. Imal et al., Phys. Rev. C 91, 034605 (2015)

    ADS  Google Scholar 

  45. C. Rappold et al., Phys. Lett. B 747, 129 (2015)

    ADS  Google Scholar 

  46. K. Turzo et al., Eur. Phys. J. A 21, 293 (2004)

    Google Scholar 

  47. R.P. Scharenberg et al., Phys. Rev. C 64, 054602 (2001)

    ADS  Google Scholar 

  48. J. Pochodzalla, Prog. Part. Nucl. Phys. 39, 443 (1997)

    ADS  Google Scholar 

  49. A.S. Botvina et al., Nucl. Phys. A 584, 737 (1995)

    ADS  Google Scholar 

  50. D.H.E. Gross, Phys. Rep. 279, 119 (1997)

    ADS  Google Scholar 

  51. A.S. Botvina, I.N. Mishustin, Phys. Rev. C 63, 061601(R) (2001)

    ADS  Google Scholar 

  52. W. Greiner, Int. J. Mod. Phys. E 5, 1 (1995)

    ADS  Google Scholar 

  53. C. Samanta et al., J. Phys. G 32, 363 (2006)

    ADS  Google Scholar 

  54. A.S. Botvina, N. Buyukcizmeci, A. Ergun, R. Ogul, M. Bleicher, J. Pochodzalla. Phys. Rev. C 94, 054615 (2016)

    ADS  Google Scholar 

  55. N. Eren et al., Eur. Phys. J. A 49, 48 (2013)

    ADS  Google Scholar 

  56. N. Buyukcizmeci et al., Phys. Rev. C 98, 064603 (2018)

    ADS  Google Scholar 

  57. S. Hudan et al., Phys. Rev. C 67, 064613 (2003)

    ADS  Google Scholar 

  58. S.N. Soisson et al., J. Phys. G Nucl. Part. Phys. 39, 115104 (2012)

    ADS  Google Scholar 

  59. J. Gosset et al., Phys. Rev. C 16, 629 (1977)

    ADS  Google Scholar 

  60. W. Neubert, A.S. Botvina, Eur. Phys. J. A 17, 559 (2003)

    ADS  Google Scholar 

  61. R. Scheibl, U. Heinz, Phys. Rev. C 59, 1585 (1999)

    ADS  Google Scholar 

  62. S. Sombun, K. Tomuang, A. Limphirat, P. Hillmann, C. Herold, J. Steinheimer, Y. Yan, M. Bleicher, Phys. Rev. C 99, 014901 (2019)

    ADS  Google Scholar 

  63. K. Blum, M. Takimoto, Phys. Rev. C 99, 044913 (2019)

    ADS  Google Scholar 

  64. A. Botvina, Production and properties of hypernuclei in relativistic ion reactions. Talk at Theia-Strong2020 Workshop 2019. Speyer, Germany. November 25–29, (2019). https://indico.gsi.de/event/8950/overview

  65. J. Schaffner-Bielich, Nucl. Phys. A 804, 309 (2008)

    ADS  Google Scholar 

  66. H. Togashi et al., Phys. Rev. C 93, 035808 (2016)

    ADS  Google Scholar 

  67. Th. Aumann, Progr. Part. Nucl. Phys. 59, 3 (2007)

  68. J. Äystö et al., Nucl. Inst. Methods Phys. Res. B 376, 111 (2016)

    ADS  Google Scholar 

  69. C. Scheidenberger, et al., Proc. Int. Symp. on Exotic Nuclei EXON-2014, Kaliningrad, Russia, (2014). https://www.worldscientific.com/doi/abs/10.1142/9789814699464_0052

Download references

Acknowledgements

The authors thank J. Pochodzalla for stimulating discussions. N.B. acknowledges the Scientific and Technological Research Council of Turkey (TUBITAK) support under Project No. 118F111. M.B. and N.B. acknowledges that the work has been performed in the framework of COST Action CA15213 THOR. N.B. and A.S.B thank FIAS and HFHF for hospitality. A.S. Botvina acknowledges the support of Bundesministerium für Bildung und Forschung (BMBF), Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Buyukcizmeci.

Additional information

Communicated by Laura Tolos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buyukcizmeci, N., Botvina, A.S., Ogul, R. et al. Evaluation of hypernuclei in relativistic ion collisions. Eur. Phys. J. A 56, 210 (2020). https://doi.org/10.1140/epja/s10050-020-00217-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00217-6

Navigation