Helicity amplitudes in the \({\bar{B}} \rightarrow D^{*} {\bar{\nu }}_\tau \tau \) decay with V-A breaking in the quark sector

Abstract

In view of the recent measurement of the \(F_L^{D^*}\) magnitude in the \({\bar{B}} \rightarrow D^{*} {\bar{\nu }}_\tau \tau \) reaction we evaluate this magnitude within the standard model and for a family of models with the \(\gamma ^\mu -\alpha \gamma ^\mu \gamma _5\) current structure for the quarks for different values of \(\alpha \). At the same time we evaluate also the transverse contributions, \(M=-1\), \(M=+1\), and find that the difference between the \(M=-1\) and \(M=+1\) contributions is far more sensitive to changes in \(\alpha \) than the longitudinal component. These findings should be looked as an incentive to measure the transverse helicities which are bound to be a far more sensitive magnitude to possible new physics than \(F_L^{D^*}\).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors comment: All data generated during this study are contained in this published article.]

References

  1. 1.

    B. Aubert et al. [BaBar Collaboration], Phys. Rev. Lett. 91, 171802 (2003)

  2. 2.

    K.F. Chen et al. [Belle Collaboration], Phys. Rev. Lett. 91, 201801 (2003)

  3. 3.

    A.K. Alok, A. Datta, A. Dighe, M. Duraisamy, D. Ghosh, D. London, J. High Energy Phys. 11, 121 (2011)

    ADS  Article  Google Scholar 

  4. 4.

    A. Datta, A.V. Gritsan, D. London, M. Nagashima, A. Szynkman, Phys. Rev. D 76, 034015 (2007)

    ADS  Article  Google Scholar 

  5. 5.

    T. Aaltonen et al. [CDF Collaboration], Phys. Rev. Lett. 107, 261802 (2011)

  6. 6.

    P. del Amo Sanchez et al. [BaBar Collaboration], Phys. Rev. D 83, 051101 (2011)

  7. 7.

    R. Aaij et al. [LHCb Collaboration], Phys. Lett. B 709, 50 (2012)

  8. 8.

    A.L. Kagan, Phys. Lett. B 601, 151 (2004)

    ADS  Article  Google Scholar 

  9. 9.

    M. Beneke, J. Rohrer, D. Yang, Nucl. Phys. B 774, 64 (2007)

    ADS  Article  Google Scholar 

  10. 10.

    A. Datta, Y. Gao, A.V. Gritsan, D. London, M. Nagashima, A. Szynkman, Phys. Rev. D 77, 114025 (2008)

  11. 11.

    Y.G. Xu, R.M. Wang, Int. J. Theor. Phys. 55, 5290 (2016)

    Article  Google Scholar 

  12. 12.

    J.P. Lees et al. [BaBar Collaboration], Phys. Rev. D 93, 052015 (2016)

  13. 13.

    J.T. Wei et al. [Belle Collaboration], Phys. Rev. Lett. 103, 171801 (2009)

  14. 14.

    T. Aaltonen et al. [CDF Collaboration], Phys. Rev. Lett. 108, 081807 (2012)

  15. 15.

    S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 727, 77 (2013)

  16. 16.

    R. Aaij et al. [LHCb Collaboration], J. High Energy Phys. 1308, 131 (2013)

  17. 17.

    D. Das, G. Hiller, I. Nisandzic, Phys. Rev. D 95, 073001 (2017)

    ADS  Article  Google Scholar 

  18. 18.

    W. Altmannshofer, A.J. Buras, D.M. Straub, M. Wick, J. High Energy Phys. 0904, 022 (2009)

    ADS  Article  Google Scholar 

  19. 19.

    M.J. Aslam, C.D. Lü, Y.M. Wang, Phys. Rev. D 79, 074007 (2009)

    ADS  Article  Google Scholar 

  20. 20.

    R.H. Li, C.D. Lü, W. Wang, Phys. Rev. D 83, 034034 (2011)

    ADS  Article  Google Scholar 

  21. 21.

    C.D. Lü, W. Wang, Phys. Rev. D 85, 034014 (2012)

    ADS  Article  Google Scholar 

  22. 22.

    S. Fajfer, J.F. Kamenik, I. Nisandzic, Phys. Rev. D 85, 094025 (2012)

    ADS  Article  Google Scholar 

  23. 23.

    M. Tanaka, R. Watanabe, Phys. Rev. D 87, 034028 (2013)

    ADS  Article  Google Scholar 

  24. 24.

    A. Abdesselam et al. [Belle Collaboration]. arXiv:1903.03102 [hep-ex]

  25. 25.

    M.A. Ivanov, J.G. Körner, C.T. Tran, Phys. Rev. D 92, 114022 (2015)

    ADS  Article  Google Scholar 

  26. 26.

    A.K. Alok, D. Kumar, S. Kumbahar, S.U. Sankar, Phys. Rev. D 95, 115038 (2017)

    ADS  Article  Google Scholar 

  27. 27.

    Z.-R. Huang, Y. Li, M. Ali Paracha, C. Wang, Phys. Rev. D 98, 095018 (2018)

    ADS  Article  Google Scholar 

  28. 28.

    S. Bhattacharya, S. Nandi, S.K. Patra. arXiv:1805.08222 [hep-ph]

  29. 29.

    M.A. Ivanov, J.G. Körner, C.T. Tran, Phys. Rev. D 94, 094028 (2016)

    ADS  Article  Google Scholar 

  30. 30.

    L.R. Dai, E. Oset, Eur. Phys. J. C 78, 951 (2018)

    ADS  Article  Google Scholar 

  31. 31.

    L.R. Dai, X. Zhang, E. Oset, Phys. Rev. D 98, 036004 (2018)

    ADS  Article  Google Scholar 

  32. 32.

    N. Isgur, M.B. Wise, Phys. Lett. B 232, 113 (1989)

    ADS  Article  Google Scholar 

  33. 33.

    N. Isgur, M.B. Wise, Phys. Lett. B 237, 527 (1990)

    ADS  Article  Google Scholar 

  34. 34.

    M. Neubert, Phys. Rev. D 46, 2212 (1992)

    ADS  Article  Google Scholar 

  35. 35.

    I. Caprini, L. Lellouch, M. Neubert, Nucl. Phys. B 530, 153 (1998)

    ADS  Article  Google Scholar 

  36. 36.

    M. Neubert, Int. J. Mod. Phys. A 11, 4173 (1996)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank L. S. Geng for useful discussions on the work. LRD acknowledges the support from the National Natural Science Foundation of China (Grant Nos. 11975009, 11575076). EO acknowledges the support from the Spanish Ministerio de Economia y Competitividad and European FEDER funds under Contracts No. FIS2017-84038-C2-1-P B and No. FIS2017-84038-C2-2-P B. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 824093 for the STRONG-2020 project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. R. Dai.

Additional information

Communicated by Shi-lin Zhu

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dai, L.R., Oset, E. Helicity amplitudes in the \({\bar{B}} \rightarrow D^{*} {\bar{\nu }}_\tau \tau \) decay with V-A breaking in the quark sector. Eur. Phys. J. A 56, 154 (2020). https://doi.org/10.1140/epja/s10050-020-00160-6

Download citation