First comparison of GEANT4 hadrontherapy physics model with experimental data for a NUMEN project reaction case

Abstract

Gamma-ray and neutron spectra from the \(^{18}\hbox {O }{+}^{76} \hbox {Se}\) reaction at 15.3 MeV/u were measured with the EDEN array of liquid scintillators at the LNS. The results were compared to GEANT Hadrontherapy physics list simulations in order to assess the reliability of this model for the development of the NUMEN project. A good agreement with the shape of the experimental gamma-ray spectra and a reasonable agreement with the total count rates were obtained. The gamma spectra originated from the nuclear reactions were selected by time coincidence with the Superconducting Cyclotron radio-frequency reference signal. The random coincidence background rate was appropriately described only when the Faraday Cup, the material and geometry of the experimental hall and its contents were included in the simulation with sufficient detail. The information on the radiation spectra is important for the adequate development of the project of the detector arrays and electronic equipment for the advanced phase of NUMEN. Since orders of magnitude larger beam intensities are planned for this phase, the random coincidence rate is also of significant importance, particularly for the performance of the G-NUMEN gamma calorimeter array.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data can be made available uppon request, together with explanations of their acquisition conditions.]”.

References

  1. 1.

    F. Cappuzzello et al., Eur. Phys. J. A 54, 72 (2018)

    ADS  Article  Google Scholar 

  2. 2.

    H. Lenske et al., Prog. Part. Nucl. Phys. 109, 103716 (2019)

    Article  Google Scholar 

  3. 3.

    L. Calabretta et al., Mod. Phys. Lett. A 32, 17 (2017)

    Article  Google Scholar 

  4. 4.

    F. Iazzi et al., WIT Trans. Eng. Sci. 116, 61 (2017)

    Article  Google Scholar 

  5. 5.

    F. Pinna, D. Calvo, V. Capirossi, F. Delaunay, M. Fisichella, F. Iazzi, R. Introzzi, Il Nuovo Cimento 42C, 67 (2019)

    Google Scholar 

  6. 6.

    A. Muoio et al., Eur. Phys. J. Web Conf. 117, 10006 (2016)

    Article  Google Scholar 

  7. 7.

    S. Tudisco et al., Sensors 18(7), 2289 (2018)

    Article  Google Scholar 

  8. 8.

    C. Ciampi, et al., NIMA Vol. 925 (2019) Nuclear Instum. Meth. A 925, 60 (2019)

  9. 9.

    D. Carbone et al., Results Phys. 6, 863 (2016)

    ADS  Article  Google Scholar 

  10. 10.

    J.R.B. Oliveira et al., J. Phys. Conf. Ser. 1056, 012040 (2018)

    Article  Google Scholar 

  11. 11.

    F. Cappuzzello et al., Eur. Phys. J. A 52, 167 (2016)

    ADS  Article  Google Scholar 

  12. 12.

    H. Laurent, H. Lefort, D. Beaumel, Y. Blumenfeld, S. Fortier, S. Galès, J. Guillot, J.C. Roynette, P. Volkov, Nucl. Instrum. Meth. A 326, 517 (1993)

    ADS  Article  Google Scholar 

  13. 13.

    M. Cavallaro et al., Nucl. Instrum. Meth. A 700, 65 (2013)

    ADS  Article  Google Scholar 

  14. 14.

    M. Cavallaro et al., Phys. Rev. C 93, 064323 (2016)

    ADS  Article  Google Scholar 

  15. 15.

    M. Cavallaro et al., Nucl. Instrum. Methods B 463, 334 (2020)

    ADS  Article  Google Scholar 

  16. 16.

    M. Cecconello, M. Donato, C. Marini-Bettolo, S. Conroy, S. Sangaroon, G. Ericsson, Nucl. Instrum. Methods A 753, 34 (2014)

    ADS  Article  Google Scholar 

  17. 17.

    S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003)

    ADS  Article  Google Scholar 

  18. 18.

    J. Allison et al., IEEE Trans. Nucl. Sci. 53, 270 (2006)

    ADS  Article  Google Scholar 

  19. 19.

    J. Allison et al., Nucl. Instrum. Methods A 835, 186 (2016)

    ADS  Article  Google Scholar 

  20. 20.

    R. Brun, F. Rademakers, Nucl. Instrum. Methods A 389, 81 (1997)

    ADS  Article  Google Scholar 

  21. 21.

    M. Tanabashi et al., Particle Data Group. Phys. Rev. D 98, 030001 (2018)

    ADS  Article  Google Scholar 

  22. 22.

    Zachary S. Hartwig, Peter Gumplinger, Nucl. Instrum. Methods A 737, 155 (2014)

    ADS  Article  Google Scholar 

  23. 23.

    J. Scherzinger, R. Al Jebali, J.R.M. Annand, K.G. Fissum, R. Hall-Wilton, K. Kanaki, M. Lundin, B. Nilsson, H. Perrey, A. Rosborg, H. Svensson, Nucl. Instrum. Methods A 840, 121 (2016)

    ADS  Article  Google Scholar 

  24. 24.

    G. Folger, V.N. Ivanchenko, J.P. Wellisch, Eur. Phys. J. A 21, 407 (2004)

    ADS  Article  Google Scholar 

  25. 25.

    J. Dudouet, D. Cussol, D. Durand, M. Labalme, Phys. Rev. C 89, 054616 (2014)

    ADS  Article  Google Scholar 

  26. 26.

    M. De Napoli, F. Romano, D. D’Urso, T. Licciardello, C. Agodi, G. Candiano, F. Cappuzzello, G.A.P. Cirrone, G. Cuttone, A. Musumarra, L. Pandola, V. Scuderi, Phys. Med. Biol. 59, 7643 (2014)

    Article  Google Scholar 

  27. 27.

    D. Bolst, G.A.P. Cirrone, G. Cuttone, G. Folger, S. Incerti, V. Ivanchenko, T. Koi, D. Mancusi, L. Pandola, F. Romano, A.B. Rosenfeld, S. Guatelli, Nucl. Instrum. Methods A 869, 68 (2017)

    ADS  Article  Google Scholar 

  28. 28.

    C. Mancini-Terracciano et al., World Congress on Medical Physics and Biomedical Engineering 2018, IFMBE Proceedings 68, 675

  29. 29.

    M. Pinto, D. Dauvergne, N. Freud, J. Krimmer, J.M. Létang, E. Testa, Front. Oncol. 6, 10 (2016)

    Article  Google Scholar 

  30. 30.

    C. Mancini-Terracciano et al., Phys. Med. 67, 116 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from Fundação de Amparo à pesquisa no Estado de São Paulo, (FAPESP grants proc. 2016/04612-9 and 2017/50160-5), Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq and from Instituto Nacional de Ciência e Tecnologia-Física Nuclear e Aplicações (INCT-FNA, research project 464898/2014-5), Brazil.

Author information

Affiliations

Authors

Consortia

Corresponding author

Correspondence to J. R. B. Oliveira.

Additional information

Communicated by Jose Benlliure.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oliveira, J.R.B., Moralles, M., Flechas, D. et al. First comparison of GEANT4 hadrontherapy physics model with experimental data for a NUMEN project reaction case. Eur. Phys. J. A 56, 153 (2020). https://doi.org/10.1140/epja/s10050-020-00152-6

Download citation