Skip to main content
Log in

Nuclear surface energy coefficients in cluster decay

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The influence of different nuclear surface energy coefficients of the proximity potential in cluster decay of heavy, unstable radioactive nuclei is studied using a fission model by incorporating the preformation probability as the penetration probability of the overlapping region. An expression for preformation probability is fitted for preformation values, for which best matching is noted between calculated and experimental half-lives and is used in further calculations of cluster decay of superheavy elements. Half-lives for heavy cluster emission such as Ar, Ca, Ti, Cr, Fe, Co, Ni, Zn, Ga, Ge and Se, from superheavy nuclei with mass number in the range \( 252 \leq A \leq 294\) are predicted using the fitted expression for preformation probability. Predicted half-lives of heavy particle decay of superheavy nuclei compare well with the other prediction for a few clusters. Alpha decay being the predominant decay mode of heavy and superheavy nuclei, half-lives of heavy and superheavy nuclei are also calculated. Calculated half-lives of alpha decay for superheavy nuclei better reproduce the experimental values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Sandulescu, D.N. Poenaru, W. Greiner, Sov. J. Part. Nucl. 11, 528 (1980)

    Google Scholar 

  2. H.J. Rose, G.A. Jones, Nature 307, 245 (1984)

    Article  ADS  Google Scholar 

  3. D.V. Alexandrov, A.F. Belyatsky, Yu.A. Glukhov, E.Yu. Nikol’sky, B.V. Novatsky, A.A. Oglobin, D.N. Stepanov, JETP Lett. 40, 909 (1984)

    ADS  Google Scholar 

  4. S. Gales, E. Hourany, M. Houssonnois, J.P. Shapira, L. Stab, M. Vergnes, Phys. Rev. Lett. 53, 759 (1984)

    Article  ADS  Google Scholar 

  5. R.K. Gupta, in Heavy Elements and Related New Phenomena, edited by W. Greiner, R.K. Gupta, Vol. II (World Scientific, Singapore, 1999) p. 730

  6. R. Blendowske, T. Fliessbach, H. Walliser, Nucl. Phys. A 464, 75 (1987)

    Article  ADS  Google Scholar 

  7. R. Blendowske, H. Walliser, Phys. Rev. Lett. 61, 1930 (1988)

    Article  ADS  Google Scholar 

  8. S. Kumar, R.K. Gupta, Phys. Rev. C 55, 218 (1997)

    Article  ADS  Google Scholar 

  9. S.S. Malik, R.K. Gupta, Phys. Rev. C 39, 1992 (1989)

    Article  ADS  Google Scholar 

  10. R.K. Gupta, W. Scheid, W. Greiner, J. Phys. G: Nucl. Part. Phys. 17, 1731 (1991)

    Article  ADS  Google Scholar 

  11. Y.J. Shi, W.J. Swiatecki, Phys. Rev. Lett. 54, 300 (1985)

    Article  ADS  Google Scholar 

  12. D.N. Poenaru, M. Ivascu, A. Sandulescu, W. Greiner, J. Phys. G: Nucl. Phys. 10, L183 (1984)

    Article  ADS  Google Scholar 

  13. D.N. Poenaru, M. Ivascu, A. Sandulescu, W. Greiner, Phys. Rev. C 32, 572 (1985)

    Article  ADS  Google Scholar 

  14. W. Greiner, M. Ivascu, D.N. Poenaru, A. Sandulescu, Z. Phys. A 320, 347 (1985)

    Article  ADS  Google Scholar 

  15. G.A. Pik-Pichak, Sov. J. Nucl. Phys. 44, 923 (1986)

    Google Scholar 

  16. G. Shanmugam, B. Kamalaharan, Phys. Rev. C 38, 1377 (1988)

    Article  ADS  Google Scholar 

  17. B. Buck, A.C. Merchant, J. Phys. G: Nucl. Part. Phys. 15, 615 (1989)

    Article  ADS  Google Scholar 

  18. A. Sandulescu, R.K. Gupta, W. Greiner, F. Carstoiu, M. Horoi, Int. J. Mod. Phys. E 1, 379 (1992)

    Article  ADS  Google Scholar 

  19. D.N. Poenaru, W. Greiner, Phys. Scr. 44, 427 (1991)

    Article  ADS  Google Scholar 

  20. D.N. Poenaru, R.A. Gherghescu, W. Greiner, J. Phys. G: Nucl. Part. Phys. 39, 015105 (2012)

    Article  ADS  Google Scholar 

  21. D.N. Poenaru, R.A. Gherghescu, W. Greiner, Phys. Rev. Lett. 107, 062503 (2011)

    Article  ADS  Google Scholar 

  22. D.N. Poenaru, W. Greiner, E. Hourany, J. Phys. G: Nucl. Part. Phys. 22, 621 (1996)

    Article  ADS  Google Scholar 

  23. S.N. Kuklin, T.M. Shneidman, G.G. Adamian, N.V. Antonenko, Eur. Phys. J. A 48, 112 (2012)

    Article  ADS  Google Scholar 

  24. S.N. Kuklin, G.G. Adamian, N.V. Antonenko, Phys. Rev. C 71, 014301 (2005)

    Article  ADS  Google Scholar 

  25. C. Qi, F.R. Xu, R.J. Liotta, R. Wyss, Phys. Rev. Lett. 103, 072501 (2009)

    Article  ADS  Google Scholar 

  26. S.G. Kadmensky, S.D. Kurgalin, Yu.M. Tchuvilśky, Phys. Part. Nucl. 38, 699 (2007)

    Article  Google Scholar 

  27. O.A.P. Tavares, L.A.M. Roberto, E.L. Medeiros, Phys. Scr. 76, 375 (2007)

    Article  ADS  Google Scholar 

  28. D.N. Poenaru, H. Stöcker, R.A. Gherghescu, Eur. Phys. J. A 54, 14 (2018)

    Article  ADS  Google Scholar 

  29. Y.L. Zhang, Y.Z. Wang, Phy. Rev. C 97, 014318 (2018)

    Article  ADS  Google Scholar 

  30. J. Blocki, J. Randrup, W.J. Swiatecki, C.F. Tsang, Ann. Phys. (N.Y.) 105, 427 (1977)

    Article  ADS  Google Scholar 

  31. Ishwar Dutt, Pramana 76, 921 (2011)

    Article  Google Scholar 

  32. W.D. Myers, W.J. Swiatecki, Nucl. Phys. 81, 1 (1966)

    Article  Google Scholar 

  33. W.D. Myers, W.J. Swiatecki, Ark. Fys. 36, 343 (1967)

    Google Scholar 

  34. G. Royer, B. Remaud, J. Phys. G: Nucl. Phys. 10, 1057 (1984)

    Article  ADS  Google Scholar 

  35. K. Pomorski, J. Dudek, Phys. Rev. C 67, 044316 (2003)

    Article  ADS  Google Scholar 

  36. N.S. Rajeswari, C. Nivetha, M. Balasubramaniam, Proc. DAE Symp. Nucl. Phys. 62, 526 (2017)

    Google Scholar 

  37. R. Bonetti, A. Guglielmetti, Rom. Rep. Phys. 59, 301 (2007)

    Google Scholar 

  38. M. Wang, G. Audi, F.G. Kondev, W.J. Huang, S. Naimi, Xing Xu, Chin. Phys. C 41, 030003 (2017)

    Article  ADS  Google Scholar 

  39. V.Yu. Denisov, A.A. Khudenko, At. Data Nucl. Data Tables 95, 815 (2009)

    Article  ADS  Google Scholar 

  40. M. Balasubramaniam, N.S. Rajeswari, Int. J. Mod. Phys. E 23, 1450018 (2014)

    Article  ADS  Google Scholar 

  41. P. Möller, J.R. Nix, W.J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995)

    Article  ADS  Google Scholar 

  42. G. Audi, F.G. Kondev, Meng Wang, W.J. Huang, S. Naimi, Chin. Phys. C 41, 030001 (2017)

    Article  ADS  Google Scholar 

  43. Yu.Ts. Oganessian, A. Sobiczewski, G.M. Ter-Akopian, Phys. Scr. 92, 023003 (2017)

    Article  ADS  Google Scholar 

  44. Yu.Ts. Oganessian, V.K. Utyonkov, Yu.V. Lobanov, F.Sh. Abdullin, A.N. Polyakov, I.V. Shirokovsky, Yu.S. Tsyganov, G.G. Gulbekian, S.L. Bogomolov, B.N. Gikal, A.N. Mezentsev, S. Iliev, V.G. Subbotin, A.M. Sukhov, A.A. Voinov, G.V. Buklanov, K. Subotic, V.I. Zagrebaev, M.G. Itkis, J.B. Patin, K.J. Moody, J.F. Wild, M.A. Stoyer, N.J. Stoyer, D.A. Shaughnessy, J.M. Kenneally, P.A. Wilk, R.W. Lougheed, R.I. Il’kaev, S.P. Vesnovskii, Phy. Rev. C 70, 064609 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Rajeswari.

Additional information

Communicated by P. Capel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajeswari, N.S., Nivetha, C. & Balasubramaniam, M. Nuclear surface energy coefficients in cluster decay. Eur. Phys. J. A 54, 156 (2018). https://doi.org/10.1140/epja/i2018-12576-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12576-4

Navigation