Skip to main content
Log in

The \(\gamma\)-ray angular distribution in fast neutron inelastic scattering from iron

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The angular distribution of \( \gamma\)-rays emitted after inelastic scattering of fast neutrons from iron was determined at the n ELBE neutron time-of-flight facility. An iron sample of natural isotopic composition was irradiated by a continuous photo-neutron spectrum in the energy range from about 0.1 up to 10 MeV. The de-excitation \(\gamma\)-rays of the four lowest excited states of 56Fe and the first excited state of 54Fe were detected using a setup of five high-purity germanium (HPGe) detectors and five LaBr3 scintillation detectors positioned around the sample at \( 30^\circ\) , \(55^{\circ}\), \(90^{\circ}\), \( 125^{\circ}\) and \(150^{\circ}\) with respect to the incoming neutron beam. The resulting angular distributions were fitted by Legendre polynomials up to 4th order and the angular distribution coefficients \(a_{2}\) and \( a_{4}\) were extracted. The angular distribution coefficients of three transitions in 56Fe are reported here for the first time. The results are applied to a previous measurement of the inelastic scattering cross section determined using a single HPGe detector positioned at \(125^{\circ}\). Using the updated \(\gamma\)-ray angular distribution, the previous cross section results are in good agreement with reference data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. The CIELO project, https://ndclx4.bnl.gov/gf/project/cielo_iron/

  2. NEA Nuclear Data High Priority Request List, https://www.oecd-nea.org/dbdata/hprl/

  3. A. Negret et al., Phys. Rev. C 90, 034602 (2014)

    Article  ADS  Google Scholar 

  4. A.P.D. Ramirez et al., Phys. Rev. C 95, 064605 (2017)

    Article  ADS  Google Scholar 

  5. G.E. Mitchell et al., Rev. Mod. Phys. 82, 2845 (2010)

    Article  ADS  Google Scholar 

  6. K.A. Eberhard, in Proceedings of the International Conference on Statistical Properties of Nuclei, 1971 (Plenum Press, N.Y., 1972) p. 139

  7. L.C. Mihailescu et al., Nucl. Instrum. Methods A 531, 375 (2004)

    Article  ADS  Google Scholar 

  8. D.L. Smith, Report ANL/NDM-20 (1976)

  9. W. Kinney et al., Nucl. Sci. Eng. 63, 418 (1977)

    Article  Google Scholar 

  10. N. Otuka et al., Nucl. Data Sheets 120, 272 (2014)

    Article  ADS  Google Scholar 

  11. R. Beyer et al., Nucl. Phys. A 927, 41 (2014)

    Article  ADS  Google Scholar 

  12. M. Dietz et al., EPJ Web of Conferences 146, 11040 (2017)

    Article  Google Scholar 

  13. F. Gabriel et al., Nucl. Instrum. Methods B 161, 1143 (2000)

    Article  ADS  Google Scholar 

  14. J. Teichert et al., Nucl. Instrum. Methods A 507, 354 (2003)

    Article  ADS  Google Scholar 

  15. E. Altstadt et al., Ann. Nucl. Energy 34, 36 (2007)

    Article  Google Scholar 

  16. J. Klug et al., Nucl. Instrum. Methods A 577, 641 (2007)

    Article  ADS  Google Scholar 

  17. P. Schillebeeckx et al., Nucl. Data Sheets 113, 3054 (2012)

    Article  ADS  Google Scholar 

  18. R. Beyer et al., Nucl. Instrum. Methods A 723, 151 (2013)

    Article  ADS  Google Scholar 

  19. H. Junde et al., Nucl. Data Sheets 107, 1393 (2006)

    Article  ADS  Google Scholar 

  20. H. Junde et al., Nucl. Data Sheets 112, 1513 (2011)

    Article  ADS  Google Scholar 

  21. S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003)

    Article  ADS  Google Scholar 

  22. R.W. Benjamin et al., Nucl. Phys. 79, 241 (1966)

    Article  Google Scholar 

  23. R.W. Benjamin et al., Phys. Rev. 163, 1252 (1967)

    Article  ADS  Google Scholar 

  24. P.T. Guenther et al., Ann. Nucl. Energy 13, 601 (1986)

    Article  Google Scholar 

  25. F.G. Perey, in Proceedings of the 3rd International Conference on Neutron Cross Sections and Technology, Knoxville, TN, USA (U.S. Department of Commerce, National Bureau of Standards, 1971) p. 191

  26. JEFF-3.2 evaluated data library, http://www.oecd-nea.org/dbforms/data/eva/evatapes/jeff_32/

  27. M.B. Chadwick et al., Nucl. Data Sheets 112, 2887 (2011)

    Article  ADS  Google Scholar 

  28. M. Dietz, Master Thesis, Technische Universität Dresden, Germany (2016) https://www.hzdr.de/publications/PublDoc-11136.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Beyer.

Additional information

Communicated by P. Woods

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beyer, R., Dietz, M., Bemmerer, D. et al. The \(\gamma\)-ray angular distribution in fast neutron inelastic scattering from iron. Eur. Phys. J. A 54, 58 (2018). https://doi.org/10.1140/epja/i2018-12492-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12492-7

Navigation