The nucleon as a test case to calculate vector-isovector form factors at low energies

  • Stefan Leupold
Open Access
Regular Article - Theoretical Physics


Extending a recent suggestion for hyperon form factors to the nucleon case, dispersion theory is used to relate the low-energy vector-isovector form factors of the nucleon to the pion vector form factor. The additionally required input, i.e. the pion-nucleon scattering amplitudes are determined from relativistic next-to-leading-order (NLO) baryon chiral perturbation theory including the nucleons and optionally the Delta baryons. Two methods to include pion rescattering are compared: a) solving the Muskhelishvili-Omnès (MO) equation and b) using an N/D approach. It turns out that the results differ strongly from each other. Furthermore the results are compared to a fully dispersive calculation of the (subthreshold) pion-nucleon amplitudes based on Roy-Steiner (RS) equations. In full agreement with the findings from the hyperon sector it turns out that the inclusion of Delta baryons is not an option but a necessity to obtain reasonable results. The magnetic isovector form factor depends strongly on a low-energy constant of the NLO Lagrangian. If it is adjusted such that the corresponding magnetic radius is reproduced, then the results for the corresponding pion-nucleon scattering amplitude (based on the MO equation) agree very well with the RS results. Also in the electric sector the Delta degrees of freedom are needed to obtain the correct order of magnitude for the isovector charge and the corresponding electric radius. Yet quantitative agreement is not achieved. If the subtraction constant that appears in the solution of the MO equation is not taken from nucleon+Delta chiral perturbation theory but adjusted such that the electric radius is reproduced, then one obtains also in this sector a pion-nucleon scattering amplitude that agrees well with the RS results.


  1. 1.
    M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Perseus, Cambridge, Massachusetts, 1995)Google Scholar
  2. 2.
    N. Muskhelishvili, Singular Integral Equations. Boundary Problems of Function Theory and Their Application to Mathematical Physics (P. Noordhoff., Groningen, 1953)Google Scholar
  3. 3.
    R. Omnes, Nuovo Cimento 8, 316 (1958)CrossRefGoogle Scholar
  4. 4.
    J.D. Bjorken, S.D. Drell, Relativistic Quantum Fields (Mc Graw-Hill, New York, 1965)Google Scholar
  5. 5.
    Particle Data Group (C. Patrignani et al.), Chin. Phys. C 40, 100001 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    W.R. Frazer, J.R. Fulco, Phys. Rev. 117, 1609 (1960)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    G. Höhler, E. Pietarinen, I. Sabba Stefanescu, F. Borkowski, G.G. Simon, V.H. Walther, R.D. Wendling, Nucl. Phys. B 114, 505 (1976)ADSCrossRefGoogle Scholar
  8. 8.
    P. Mergell, U.G. Meißner, D. Drechsel, Nucl. Phys. A 596, 367 (1996) arXiv:hep-ph/9506375ADSCrossRefGoogle Scholar
  9. 9.
    M. Hoferichter, B. Kubis, J. Ruiz de Elvira, H.W. Hammer, U.G. Meißner, Eur. Phys. J. A 52, 331 (2016) arXiv:1609.06722ADSCrossRefGoogle Scholar
  10. 10.
    C. Granados, S. Leupold, E. Perotti, Eur. Phys. J. A 53, 117 (2017) arXiv:1701.09130ADSCrossRefGoogle Scholar
  11. 11.
    J.M. Alarcón, A.N. Hiller Blin, M.J. Vicente Vacas, C. Weiss, Nucl. Phys. A 964, 18 (2017) arXiv:1703.04534ADSCrossRefGoogle Scholar
  12. 12.
    J.M. Alarcón, C. Weiss, arXiv:1707.07682 (2017)Google Scholar
  13. 13.
    M. Hoferichter, J. Ruiz de Elvira, B. Kubis, U.G. Meißner, Phys. Rep. 625, 1 (2016) arXiv:1510.06039ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    V. Punjabi, C.F. Perdrisat, M.K. Jones, E.J. Brash, C.E. Carlson, Eur. Phys. J. A 51, 79 (2015) arXiv:1503.01452ADSCrossRefGoogle Scholar
  15. 15.
    R. Pohl et al., Nature 466, 213 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    C.E. Carlson, Prog. Part. Nucl. Phys. 82, 59 (2015) arXiv:1502.05314ADSCrossRefGoogle Scholar
  17. 17.
    K.M. Watson, Phys. Rev. 95, 228 (1954)ADSCrossRefGoogle Scholar
  18. 18.
    G.F. Chew, S. Mandelstam, Phys. Rev. 119, 467 (1960)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    C. Hanhart, Phys. Lett. B 715, 170 (2012) arXiv:1203.6839ADSCrossRefGoogle Scholar
  20. 20.
    S.P. Schneider, B. Kubis, F. Niecknig, Phys. Rev. D 86, 054013 (2012) arXiv:1206.3098ADSCrossRefGoogle Scholar
  21. 21.
    M. Hoferichter, B. Kubis, S. Leupold, F. Niecknig, S.P. Schneider, Eur. Phys. J. C 74, 3180 (2014) arXiv:1410.4691ADSCrossRefGoogle Scholar
  22. 22.
    R. Garcia-Martin, R. Kaminski, J.R. Pelaez, J. Ruiz de Elvira, F.J. Yndurain, Phys. Rev. D 83, 074004 (2011) arXiv:1102.2183ADSCrossRefGoogle Scholar
  23. 23.
    G. Colangelo, J. Gasser, H. Leutwyler, Nucl. Phys. B 603, 125 (2001) arXiv:hep-ph/0103088ADSCrossRefGoogle Scholar
  24. 24.
    KTeV Collaboration (E. Abouzaid et al.), Phys. Rev. D 81, 052001 (2010) arXiv:0912.1291ADSCrossRefGoogle Scholar
  25. 25.
    J.G. Körner, M. Kuroda, Phys. Rev. D 16, 2165 (1977)ADSCrossRefGoogle Scholar
  26. 26.
    W.R. Frazer, J.R. Fulco, Phys. Rev. 117, 1603 (1960)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    T. Becher, H. Leutwyler, JHEP 06, 017 (2001) arXiv:hep-ph/0103263ADSCrossRefGoogle Scholar
  28. 28.
    X.W. Kang, B. Kubis, C. Hanhart, U.G. Meißner, Phys. Rev. D 89, 053015 (2014) arXiv:1312.1193ADSCrossRefGoogle Scholar
  29. 29.
    G.P. Lepage, S.J. Brodsky, Phys. Lett. B 87, 359 (1979)ADSCrossRefGoogle Scholar
  30. 30.
    Belle Collaboration (M. Fujikawa et al.), Phys. Rev. D 78, 072006 (2008) arXiv:0805.3773CrossRefGoogle Scholar
  31. 31.
    S. Scherer, M.R. Schindler, Quantum chromodynamics and chiral symmetry, in A Primer for Chiral Perturbation Theory, Lect. Notes Phys., Vol. 830 (Springer, Berlin, Heidelberg, 2011)Google Scholar
  32. 32.
    V. Pascalutsa, M. Vanderhaeghen, S.N. Yang, Phys. Rep. 437, 125 (2007) arXiv:hep-ph/0609004ADSCrossRefGoogle Scholar
  33. 33.
    C. Hanhart, A. Kupść, U.G. Meißner, F. Stollenwerk, A. Wirzba, Eur. Phys. J. C 73, 2668 (2013) arXiv:1307.5654ADSCrossRefGoogle Scholar
  34. 34.
    S. Weinberg, Phys. Rev. Lett. 17, 616 (1966)ADSCrossRefGoogle Scholar
  35. 35.
    Y. Tomozawa, Nuovo Cimento A 46, 707 (1966)ADSCrossRefGoogle Scholar
  36. 36.
    N. Fettes, U.G. Meißner, S. Steininger, Nucl. Phys. A 640, 199 (1998) arXiv:hep-ph/9803266ADSCrossRefGoogle Scholar
  37. 37.
    H.W. Fearing, S. Scherer, Phys. Rev. C 62, 034003 (2000) arXiv:nucl-th/9909076ADSCrossRefGoogle Scholar
  38. 38.
    M. Hoferichter, J. Ruiz de Elvira, B. Kubis, U.G. Meißner, Phys. Rev. Lett. 115, 192301 (2015) arXiv:1507.07552ADSCrossRefGoogle Scholar
  39. 39.
    J.J. Kelly, Phys. Rev. C 70, 068202 (2004)ADSCrossRefGoogle Scholar
  40. 40.
    R.F. Dashen, A.V. Manohar, Phys. Lett. B 315, 425 (1993) arXiv:hep-ph/9307241ADSCrossRefGoogle Scholar
  41. 41.
    C. Granados, C. Weiss, JHEP 01, 092 (2014) arXiv:1308.1634ADSCrossRefGoogle Scholar
  42. 42.
    C. Lam, K. Liu, Phys. Rev. Lett. 79, 597 (1997) arXiv:hep-ph/9704235ADSCrossRefGoogle Scholar
  43. 43.
    R. Garcia-Martin, B. Moussallam, Eur. Phys. J. C 70, 155 (2010) arXiv:1006.5373ADSCrossRefGoogle Scholar
  44. 44.
    B. Kubis, J. Plenter, Eur. Phys. J. C 75, 283 (2015) arXiv:1504.02588ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Institutionen för fysik och astronomiUppsala UniversitetUppsalaSweden

Personalised recommendations