Synthesis and decay process of superheavy nuclei with Z=119-122 via hot-fusion reactions

Regular Article - Theoretical Physics

Abstract.

In this research article attempts have been made to calculate the superheavy-nuclei synthesis characteristics including, the potential energy parameters, fusion probability, fusion and evaporation residue (ER) cross sections as well as, decay properties of compound nucleus and the residue nuclei formation probability for elements with Z=119-122 by using the hot-fusion reactions. It is concluded that, although a selection of double magic projectiles such as 48Ca with high binding energy, simplifies the calculations significantly due to spherical symmetric shape of the projectile, resulting in high evaporation residue cross section, unfortunately, nuclei with \( Z > 98\) do not exist in quantities sufficient for constructing targets for the hot-fusion reactions. Therefore, practically our selection is fusion reactions with titanium projectile because the mass production of target nuclei for experimental purposes is more feasible. Based upon our findings, it is necessary, for new superheavy-nuclei production with \( Z > 119\), to use neutron-rich projectiles and target nuclei. Finally, the maximal evaporation residue cross sections for the synthesis of superheavy elements with Z=119-122 have been calculated and compared with the previously founded ones in the literature.

References

  1. 1.
    Yu.Ts. Oganessian, J. Phys. G: Nucl. Part. Phys. 34, R165 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    Yu.Ts. Oganessian et al., Phys. Rev. C 69, 054607 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Yu.Ts. Oganessian et al., Phys. Rev. C 87, 014302 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    Yu.Ts. Oganessian et al., Phys. Rev. C 74, 044602 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    Yu.Ts. Oganessian et al., Phys. Rev. C 70, 064609 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    Yu.Ts. Oganessian et al., Phys. Rev. C 76, 011601(R) (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Yu.Ts. Oganessian et al., Phys. Rev. C 87, 054621 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Yu.Ts. Oganessian et al., Phys. Rev. C 83, 054315 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    J.M. Gates et al., Phys. Rev. C 83, 054618 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Yu.Ts. Oganessian et al., Phys. Rev. Lett. 109, 162501 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    Yu.Ts. Oganessian et al., Phys. Rev. C 72, 034611 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    Yu.Ts. Oganessian et al., Phys. Rev. C 62, 041604 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    Yu.Ts. Oganessian et al., Phys. Rev. C 63, 011301 (2000)CrossRefGoogle Scholar
  14. 14.
    Yu.Ts. Oganessian, V.K. Utyonkov, K.J. Moody, Phys. At. Nucl. 64, 1349 (2001)CrossRefGoogle Scholar
  15. 15.
    Ch.E. Düllmann et al., Phys. Rev. Lett. 104, 252701 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Yu.Ts. Oganessian et al., Phys. Rev. Lett. 104, 142502 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Yu.Ts. Oganessian et al., Phys. Rev. Lett. 108, 022502 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    Yu.Ts. Oganessian et al., Phys. Rev. C 69, 021601 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    J. Khuyagbaatar et al., Phys. Rev. Lett. 112, 172501 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    L. Stavsetra et al., Phys. Rev. Lett. 103, 132502 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    P.A. Ellison et al., Phys. Rev. Lett. 105, 182701 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    G.G. Adamian, N.V. Antonenko, W. Scheid, Nucl. Phys. A 678, 24 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    V.I. Zagrebaev, Phys. Rev. C 64, 034606 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    N.V. Antonenko et al., Phys. Lett. B 319, 425 (1993)ADSCrossRefGoogle Scholar
  25. 25.
    Z.H. Liu, J.D. Bao, Phys. Rev. C 87, 034616 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    Z.Q. Feng, G.M. Jin, J.Q. Li, W. Scheid, Phys. Rev. C 76, 044606 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    K. Siwek-Wilczyʼnska et al., Phys. Rev. C 86, 014611 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    N. Wang, E.G. Zhao, W. Scheid, S.G. Zhou, Phys. Rev. C 85, 041601(R) (2012)ADSCrossRefGoogle Scholar
  29. 29.
    C.W. Shen, et al., Int. J. Mod. Phys. E 17, 66 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    G. Mandaglio, G. Giardina, A.K. Nasirov, A. Sobiczewski, Phys. Rev. C 86, 064607 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    V. Zagrebaev, W. Greiner, Phys. Rev. C 78, 034610 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    R. Smolaʼnczuk, Phys. Rev. C 81, 067602 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    N. Wang, J. Tian, W. Scheid, Phys. Rev. C 84, 061601(R) (2011)ADSCrossRefGoogle Scholar
  34. 34.
    K. Sandhu, M.K. Sharma, R.K. Gupta, Phys. Rev. C 85, 024604 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    V.I. Zagrebaev, A.V. Karpov, W. Greiner, Phys. Rev. C 85, 014608 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    A.K. Nasirov et al., Phys. Rev. C 84, 044612 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    G.N. Flerov, At. Ener. 26, 138 (1969)Google Scholar
  38. 38.
    S. Hofmann, G. Munzenberg, Rev. Mod. Phys. 72, 733 (2000)ADSCrossRefGoogle Scholar
  39. 39.
    Yu.Ts. Oganessian, Pure Appl. Chem. 75, 5 (2006)Google Scholar
  40. 40.
    G.T. Seaborg, W.D. Loveland, The Elements Beyond Uranium (John Wiley and Sons, New York, 1990)Google Scholar
  41. 41.
    Yu.Ts. Oganessian, Rep. Prog. Phys. 78, 036301 (2015)CrossRefGoogle Scholar
  42. 42.
    N. Ghahramany et al., Iran. Phys. J. 35, 1 (2007)Google Scholar
  43. 43.
    N. Ghahramany et al., Phys. Essays 21, 3 (2008)CrossRefGoogle Scholar
  44. 44.
    G. Münzenberg, K. Morita, Nucl. Phys. A 944, 3 (2015)ADSCrossRefGoogle Scholar
  45. 45.
    K. Morita et al., Nucl. Phys. A 734, 101 (2004)ADSCrossRefGoogle Scholar
  46. 46.
    G.G. Adamian, N.V. Antonenko, W. Scheid, J. Phys.: Conf. Ser. 322, 012009 (2011)ADSGoogle Scholar
  47. 47.
    K. Nishio et al., Phys. Rev. C 86, 034608 (2012)ADSCrossRefGoogle Scholar
  48. 48.
    K. Morita et al., J. Phys. Soc. Jpn. 81, 103201 (2012)ADSCrossRefGoogle Scholar
  49. 49.
    R.K. Puri et al., Eur. Phys. J. A 23, 429 (2005)ADSCrossRefGoogle Scholar
  50. 50.
    R. Arora et al., Eur. Phys. J. A 8, 103 (2000)ADSCrossRefGoogle Scholar
  51. 51.
    W.D. Mayers, W.J. Światecki, Phys. Rev. C 62, 044610 (2000)ADSCrossRefGoogle Scholar
  52. 52.
    K. Siwek-Wilczyńska, J. Wilczyński, Phys. Rev. C 69, 024611 (2004)ADSCrossRefGoogle Scholar
  53. 53.
    A. Dobrowolski et al., Nucl. Phys. A 729, 713 (2003)ADSCrossRefGoogle Scholar
  54. 54.
    V.I. Zagrebaev, Nucl. Phys. A 734, 164 (2004)ADSCrossRefGoogle Scholar
  55. 55.
    N. Wang, J. Li, E. Zhao, Phys. Rev. C 78, 054607 (2008)ADSCrossRefGoogle Scholar
  56. 56.
    V.Y. Denisov, Phys. Lett. B 526, 315 (2002)ADSCrossRefGoogle Scholar
  57. 57.
    I. Dutt, R.K. Puri, Phys. Rev. C 81, 044615 (2010)ADSCrossRefGoogle Scholar
  58. 58.
    I. Dutt, R. Bansal, Chin. Phys. Lett. 27, 112402 (2010)CrossRefGoogle Scholar
  59. 59.
    B.N. Lu et al., EPJ Web of Conferences 38, 05003 (2012)CrossRefGoogle Scholar
  60. 60.
    O.N. Ghodsi, F. Lari, Phys. Rev. C 89, 054607 (2014)ADSCrossRefGoogle Scholar
  61. 61.
    I. Dutt, Pramana J. Phys. 76, 921 (2011)ADSCrossRefGoogle Scholar
  62. 62.
    F. Lari, O.N. Ghodsi, Commun. Theor. Phys. 65, 213 (2016)ADSCrossRefGoogle Scholar
  63. 63.
    S. Goriely, F. Tondeur, J.M. Pearson, At. Data Nucl. Data Tables 77, 311 (2001)ADSCrossRefGoogle Scholar
  64. 64.
    G. Audi et al., Chin. Phys. C 36, 1287 (2012)CrossRefGoogle Scholar
  65. 65.
    R. Bass, Phys. Rev. Lett. 39, 265 (1977)ADSCrossRefGoogle Scholar
  66. 66.
    L. Zhu, W.J. Xie, F.S. Zhang, Phys. Rev. C 89, 024615 (2014)ADSCrossRefGoogle Scholar
  67. 67.
    A.N. Bezbakh, T.M. Shneidman, G.G. Adamin, N.V. Antonenko, Eur. Phys. J. A 50, 97 (2014)ADSCrossRefGoogle Scholar
  68. 68.
    M. Schädel, D. Shaughnessy (Editors), The Chemistry of Superheavy Elements (Springer-Verlag, Berlin Heidelberg, 2014) pp. 89-90Google Scholar
  69. 69.
    Yu.Ts. Oganessian et al., Phys. Rev. C 79, 024603 (2009)ADSCrossRefGoogle Scholar
  70. 70.
    Q.F. Li et al., Phys. Rev. C 83, 054620 (2011)ADSCrossRefGoogle Scholar
  71. 71.
    Z.H. Liu, J.D. Bao, Phys. Rev. C 84, 031602 (2011)ADSCrossRefGoogle Scholar
  72. 72.
    J. Zhang, C. Wang, Z. Ren, Nucl. Phys. A 909, 36 (2013)ADSCrossRefGoogle Scholar
  73. 73.
    L. Liu et al., Eur. Phys. J. A 52, 35 (2016)ADSCrossRefGoogle Scholar
  74. 74.
    W. Loveland, J. Phys. Ser. 420, 012004 (2013)ADSCrossRefGoogle Scholar
  75. 75.
    K.P. Santhosh, R.K. Biju, S. Sahadevan, Nucl. Phys. A 832, 220 (2010)ADSCrossRefGoogle Scholar
  76. 76.
    V.I. Zagrebaev et al., J. Phys.: Conf. Ser. 420, 012001 (2013)ADSGoogle Scholar
  77. 77.
    A. Sobiczewski, Acta Phys. Pol. 42, 1871 (2011)CrossRefGoogle Scholar
  78. 78.
    J.J. Li, arXiv:1303.2765v3 (2014)
  79. 79.
    G. Saxena, M. Kaushik, in Proceedings of the DAE Symposium on Nuclear Physics, Vol. 59 (Board of Research in Nuclear Sciences, 2014) available at http://www.sympnp.org/proceedings/

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Physics and Biruni Observatory, College of ScienceShiraz UniversityShirazIran

Personalised recommendations